Advertisement

Marine Viruses

Chapter
  • 349 Downloads

Abstract

In the past several decades, marine virology has progressed from an interesting finding to an important scientific field, which has attracted more and more attention. As the most abundant biological entities in the oceans, viruses have been well characterized. We have preliminary understandings of marine viruses in morphological structure, composition, and ecological function and then have made some breakthroughs in diversity and abundance of deep-sea viruses. The world’s ocean is estimated to contain more than 1030 viruses that play critical roles in the structuring of marine communities, in ocean processes, and in biogeochemical cycles through their interactions with all types of marine organisms. At present, the known represented marine viruses are classified into 8 orders and 26 families according to the ICTV Report, while much more viruses are still unknown. Marine viruses can be efficient “killers” for their hosts. Due to the long-term evolution, however, marine bacteriophages can encode auxiliary metabolic genes and metabolic compensated genes to regulate microbial metabolism, helping the hosts better survive in various marine environments.

Keywords

Marine virus Community composition Bacteria 

References

  1. Abrescia NG, Cockburn JJ, Grimes JM, Sutton GC, Diprose JM, Butcher SJ, Fuller SD, Martín CS, Burnett RM, Stuart DI (2004) Insights into assembly from structural analysis of bacteriophage PRD1. Nature 432:68–74PubMedCrossRefGoogle Scholar
  2. Abrescia NGA, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:795–822PubMedCrossRefGoogle Scholar
  3. Allison GE, Klaenhammer TR (1998) Phage resistance mechanisms in lactic acid bacteria. Int Dairy J 8:207–226CrossRefGoogle Scholar
  4. Anantharaman K, Duhaime MB, Breier JA, Wendt K, Toner BM, Dick GJ (2014) Sulfur oxidation genes in diverse deep-sea viruses. Science 344:757–760CrossRefGoogle Scholar
  5. Anderson RE, Brazelton WJ, Baross JA (2013) The deep viriosphere: assessing the viral impact on microbial community dynamics in the deep subsurface. Rev Mineral Geochem 75:649–675CrossRefGoogle Scholar
  6. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368PubMedPubMedCentralCrossRefGoogle Scholar
  7. Ankrah NYD, May AL, Middleton JL, Jones DR, Hadden MK, Gooding JR, LeCleir GR, Wilhelm SW, Campagna SR, Buchan A (2014) Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J 8:1089PubMedPubMedCentralCrossRefGoogle Scholar
  8. Antunes A, Alam I, Simões MF et al (2015) First insights into the viral communities of the deep-sea anoxic brines of the Red Sea. Genom Proteom Bioinforma 13(5):304–309CrossRefGoogle Scholar
  9. Arnold HP, Zillig W, Ziese U, Holz I, Crosby M, Utterback T, Weidmann JF, Kristjanson JK, Klenk HP, Nelson KE, Fraser CM (2000) A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267:252–266PubMedCrossRefGoogle Scholar
  10. Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35:235–241PubMedPubMedCentralGoogle Scholar
  11. Benson SD, Bamford JKH, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98:825–833PubMedCrossRefGoogle Scholar
  12. Bergh Ø, BØrsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340(6233):467–468PubMedCrossRefGoogle Scholar
  13. Boehme J, Frischer ME, Jiang SC, Kellogg CA, Pichard S, Rose JB, Steinway C, Paul JH (1993) Viruses, bacterioplankton, and phytoplankton in the southeastern Gulf of Mexico: distribution and contribution to oceanic DNA pools. Mar Ecol Prog Ser 97:1–10CrossRefGoogle Scholar
  14. Bohannan BJ, Kerr B, Jessup CM, Hughes JB, Sandvik G (2002) Trade-offs and coexistence in microbial microcosms. Antonie Van Leeuwenhoek 81:107–115PubMedCrossRefGoogle Scholar
  15. Bolduc B, Youensclark K, Roux S, Hurwitz BL, Sullivan MB (2016) iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J 11:7PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bonami JR, Lightner DV, Redman RM, Poulos BT (1992) Partial characterization of a togavirus (LOVV) associated with histopathological changes of the lymphoid organ of penaeid shrimp. Dis Aquat Org 14:145–152CrossRefGoogle Scholar
  17. Bonillafindji O, Herndl GJ, Gattuso JP, Weinbauer MG (2009) Viral and flagellate control of prokaryotic production and community structure in offshore Mediterranean waters. Appl Environ Microbiol 75:4801–4812CrossRefGoogle Scholar
  18. Børsheim KY, Bratbak G, Heldal M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 56(2):352PubMedPubMedCentralGoogle Scholar
  19. Bouvier T, Del Giorgio P (2007) Key role of selective viral-induced mortality in determining marine bacterial community composition. Environ Microbiol 9:287–297PubMedCrossRefGoogle Scholar
  20. Boyd PW, Jickells T, Law CS et al (2007) Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions. Science 315(5812):612–617PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bratbak G, Thingstad F, Heldal M (1994) Viruses and the microbial loop. Microb Ecol 28:209–221PubMedCrossRefGoogle Scholar
  22. Breitbart M (2012) Marine viruses: truth or dare. Annu Rev Mar Sci 4:425–448CrossRefGoogle Scholar
  23. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99:14250–14255PubMedCrossRefGoogle Scholar
  24. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2004) Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci 271:565–574PubMedPubMedCentralCrossRefGoogle Scholar
  25. Breitbart M, Thompson LR, Suttle CA, Sullivan MB (2007) Exploring the vast diversity of marine viruses. Oceanography 20:135–139CrossRefGoogle Scholar
  26. Brum JR, Sullivan MB (2015) Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol 13(3):147–159PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brussaard CP, Noordeloos AA, Sandaa RA, Heldal M, Bratbak G (2004) Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 319:280–291PubMedCrossRefGoogle Scholar
  28. Brussaard CPD, Bratbak G, Baudoux AC, Ruardij P (2007) Phaeocystis and its interaction with viruses. Biogeochemistry 83:201–215CrossRefGoogle Scholar
  29. Brussaard CP, Wilhelm SW, Thingstad F, Weinbauer MG, Bratbak G, Heldal M, Kimmance SA, Middelboe M, Nagasaki K, Paul JH (2008) Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J 2:575CrossRefGoogle Scholar
  30. Bryson SJ, Thurber AR, Correa AM, Orphan VJ, Vega Thurber R (2015) A novel sister clade to the enterobacteria microviruses (family Microviridae) identified in methane seep sediments. Environ Microbiol 17:3708–3721PubMedCrossRefGoogle Scholar
  31. Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JKB, Casciotti KL, Dehairs F, Elskens M (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316(5824):567–570PubMedCrossRefGoogle Scholar
  32. Chakrabarty U, Dutta S, Mallik A, Mondal D, Mandal N (2015) Identification and characterisation of microsatellite DNA markers in order to recognise the WSSV susceptible populations of marine giant black tiger shrimp, Penaeus monodon. Vet Res 46(1):1–10CrossRefGoogle Scholar
  33. Chen Y, Wei D, Wang Y et al (2013) The role of interactions between bacterial chaperone, aspartate aminotransferase, and viral protein during virus infection in high temperature environment: the interactions between bacterium and virus proteins. BMC Microbiol 13(48):1–10Google Scholar
  34. Chenard C, Suttle C (2008) Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl Environ Microbiol 74:5317–5324PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chisholm JRM (2000) Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnol Oceanogr 45:1476–1484CrossRefGoogle Scholar
  36. Cinzia C, Antonio DA, Roberto D (2007) Viral infection plays a key role in extracellular DNA dynamics in marine anoxic systems. Limnol Oceanogr 52:508–516CrossRefGoogle Scholar
  37. Cipriano RC (2002) Infectious salmon anemia virus. Alphascript Publishing.Google Scholar
  38. Claverie JM, Grzela R, Lartigue A, Bernadac A, Nitsche S, Vacelet J, Ogata H, Abergel C (2009) Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. J Invertebr Pathol 101:172–180PubMedCrossRefGoogle Scholar
  39. Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cochlan WP, Wikner J, Steward GF, Smith DC, Azam F (1993) Spatial distribution of viruses, bacteria and chlorophyll a in neritic, oceanic and estuarine environments. Mar Ecol Prog Ser 92:77–87CrossRefGoogle Scholar
  41. Colin M (2012) Marine microbiology: ecology and applications. Garland Science, New YorkGoogle Scholar
  42. Corinaldesi C, Dell’Anno A, Danovaro R (2007) Early diagenesis and trophic role of extracellular DNA in different benthic ecosystems. Limnol Oceanogr 52:1710–1717CrossRefGoogle Scholar
  43. Corinaldesi C, Tangherlini M, Dell’Anno A (2017) From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments. Sci Rep UK 7:8355CrossRefGoogle Scholar
  44. Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CP, Dutilh BE, Thompson FL (2017) Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun 8:15955PubMedPubMedCentralCrossRefGoogle Scholar
  45. Culley AI, Lang AS, Suttle CA (2003) High diversity of unknown picorna-like viruses in the sea. Nature 424:1054–1057CrossRefGoogle Scholar
  46. Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, Weinbauer M (2008) Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 454(7208):1084–1087PubMedCrossRefGoogle Scholar
  47. Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, Suttle CA (2011) Marine viruses and global climate change. FEMS Microbiol Rev 35:993–1034PubMedCrossRefGoogle Scholar
  48. Danovaro R, Dell’Anno A, Corinaldesi et al (2016) Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv 2(10):e1600492PubMedPubMedCentralCrossRefGoogle Scholar
  49. Del Giorgio PA, Bouvier TC (2002) Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnol Oceanogr 47:471–486CrossRefGoogle Scholar
  50. Dell’Anno A, Corinaldesi C, Danovaro R (2015) Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci 112:E2014–E2E19PubMedCrossRefGoogle Scholar
  51. Delong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478PubMedCrossRefGoogle Scholar
  52. Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N (2017) The family Rhabdoviridae: mono-and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170PubMedCrossRefGoogle Scholar
  53. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L (2008) Functional metagenomic profiling of nine biomes. Nature 452(7187):629–632PubMedCrossRefGoogle Scholar
  54. Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3(7187):504–510PubMedCrossRefGoogle Scholar
  55. Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, PrincetonGoogle Scholar
  56. Falkowski PG, Schofield O, Katz ME, Schootbrugge BVD, Knoll AH (2004) In: Thierstein HR, Young JR (eds) Why is the land green and the ocean red? Coccolithophorids: from molecular processes to global impact. Elsevier/Springer-Verlag, Amsterdam, pp 429–453Google Scholar
  57. Farley CA (1978) Viruses and virus-like lesions in marine molluscs. Mar Fish Rev 40(10):18–20Google Scholar
  58. Fischer MG, Suttle CA (2011) A virophage at the origin of large DNA transposons. Science 332:231–234PubMedCrossRefGoogle Scholar
  59. Fischer MG, Allen MJ, Wilson WH, Suttle CA (2010) Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci 107:19508–19513PubMedCrossRefGoogle Scholar
  60. Fonda US, Malisana E, Focaracci F, Magagnini M, Corinaldesi C, Danovaro R (2010) Disentangling the effect of viruses and nanoflagellates on prokaryotes in bathypelagic waters of the Mediterranean Sea. Mar Ecol Prog Ser 418(12):73–85CrossRefGoogle Scholar
  61. Frank H, Moebus K (1987) An electron microscopic study of bacteriophages from marine waters. Helgoländer Meeresuntersuchungen 41(4):385–414CrossRefGoogle Scholar
  62. Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548PubMedPubMedCentralCrossRefGoogle Scholar
  63. Fuhrman JA, Noble RT (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40:1236–1242CrossRefGoogle Scholar
  64. Fuhrman JA, Suttle CA (1993) Viruses in marine planktonic systems. Oceanography 6:51–63CrossRefGoogle Scholar
  65. Fuller NJ, Wilson WH, Joint IR, Mann NH (1998) Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques. Appl Environ Microbiol 64:2051PubMedPubMedCentralGoogle Scholar
  66. Ganem D, Schneider RJ (2001) Hepadnaviridae: the viruses and their replication. Fields Virol 2:2923–2969Google Scholar
  67. Gangnonngiw W, Laisutisan K, Sriurairatana S, Senapin S, Chuchird N, Limsuwan C, Chaivisuthangkura P, Flegel TW (2010) Monodon baculovirus (MBV) infects the freshwater prawn Macrobrachium rosenbergii cultivated in Thailand. Virus Res 148:24–30PubMedCrossRefGoogle Scholar
  68. Garseth AH, Biering E, Tengs T (2012) Piscine myocarditis virus (PMCV) in wild Atlantic salmon Salmo salar. Dis Aquat Org 102:157–161PubMedCrossRefGoogle Scholar
  69. Garza DR, Suttle CA (1995) Large double-stranded DNA viruses which cause the lysis of a marine heterotrophic nanoflagellate (Bodo sp.) occur in natural marine viral communities. Aquat Microb Ecol 9:203–210CrossRefGoogle Scholar
  70. Geslin C, Le RM, Erauso G, Gaillard M, Perrot G, Prieur D (2003a) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. J Bacteriol 185(13):3888–3894PubMedPubMedCentralCrossRefGoogle Scholar
  71. Geslin C, Le Romancer M, Gaillard M, Erauso G, Prieur D (2003b) Observation of virus-like particles in high temperature enrichment cultures from deep-sea hydrothermal vents. Res Microbiol 154:303–307PubMedCrossRefGoogle Scholar
  72. Geslin C, Gaillard M, Flament D, Rouault K, Romancer ML, Prieur D, Erauso G (2012) Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. J Bacteriol 189(12):4510–4519CrossRefGoogle Scholar
  73. Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Saňudo-Wilhelmy SA (1997) Release and bioavailability of C, N, P Se, and Fe following viral lysis of a marine chrysophyte. Limnol Oceanogr 42:1492–1504CrossRefGoogle Scholar
  74. Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C (2012) TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environ Microbiol 14(2):503–516PubMedCrossRefGoogle Scholar
  75. Greninger AL, DeRisi JL (2015) Draft genome sequences of Leviviridae RNA phages EC and MB recovered from San Francisco wastewater. Genome Announc 3:e00652PubMedPubMedCentralGoogle Scholar
  76. Gudenkauf BM, Gudenkauf EJB, Aragundi WM, Hewson I (2014) Discovery of urchin-associated densoviruses (family Parvoviridae) in coastal waters of the Big Island, Hawaii. J Gen Virol 95:652–658PubMedCrossRefGoogle Scholar
  77. Haaber J, Middelboe M (2009) Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling. ISME J 3:430–441CrossRefGoogle Scholar
  78. Hara S, Terauchi K, Koike I (1991) Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy. Appl Environ Microbiol 57:2731–2734PubMedPubMedCentralGoogle Scholar
  79. He T, Zhang X (2016) Characterization of bacterial communities in deep-sea hydrothermal vents from three oceanic regions. Mar Biotechnol 18(2):232–241PubMedCrossRefGoogle Scholar
  80. He T, Li H, Zhang Z (2017) Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus-host interactions. MBio 8(4):e00893–e00817PubMedPubMedCentralCrossRefGoogle Scholar
  81. Heldal M (1991) Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser 72:205–212CrossRefGoogle Scholar
  82. Hennes KP, Suttle CA (1995) Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnol Oceanogr 40:1050–1055CrossRefGoogle Scholar
  83. Hewson I, Fuhrman JA (2006) Viral impacts upon marine bacterioplankton assemblage structure. J Mar Biol Assoc UK 86:577–589CrossRefGoogle Scholar
  84. Hewson I, O’Neil JM, Fuhrman JA, Dennison WC (2001) Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr 46:1734–1746CrossRefGoogle Scholar
  85. Higgins JL, Kudo I, Nishioka J, Tsuda A, Wilhelm SW (2009) The response of the virus community to the SEEDS II mesoscale iron fertilization. Deep Sea Res Part II 56:2788–2795CrossRefGoogle Scholar
  86. Holmfeldt K, Middelboe M, Nybroe O, Riemann L (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73:6730–6739PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hosono N, Suzuki S, Kusuda R (1996) Genogrouping of birnaviruses isolated from marine fish: a comparison of VP2/NS junction regions on genome segment A. J Fish Dis 19:295–302CrossRefGoogle Scholar
  88. Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE 8:e57355PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hurwitz BL, Brum JR, Sullivan MB (2015) Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J 9(2):472PubMedCrossRefGoogle Scholar
  90. Hutchinson GE (1961) The paradox of the plankton. Am Nat 95:137–145CrossRefGoogle Scholar
  91. Jacquet S, Miki T, Noble R, Peduzzi P, Wilhelm S (2010) Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Adv Oceanogr Limnol 1:97–141CrossRefGoogle Scholar
  92. Jiang SC, Paul JH (1994) Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar Ecol Prog Ser Oldendorf 104:163–172CrossRefGoogle Scholar
  93. Jiang SC, Paul JH (1995) Viral contribution to dissolved DNA in the marine environment as determined by differential centrifugation and kingdom probing. Appl Environ Microbiol 61:317–325PubMedPubMedCentralGoogle Scholar
  94. Jiang SC, Paul JH (1998a) Gene transfer by transduction in the marine environment. Appl Environ Microbiol 64:2780–2787PubMedPubMedCentralGoogle Scholar
  95. Jiang SC, Paul JH (1998b) Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb Ecol 35:235–243PubMedCrossRefGoogle Scholar
  96. Jin M, Ye T, Zhang X (2013) Roles of bacteriophage GVE2 endolysin in host lysis at high temperatures. Microbiol SGM 159:1597–1605CrossRefGoogle Scholar
  97. Jin M, Chen Y, Xu C et al (2014) The effect of inhibition of host MreB on the infection of thermophilic phage GVE2 in high temperature environment. Sci Rep UK 4(4823):1–8Google Scholar
  98. Jin M, Xu C, Zhang X (2015) The effect of tryptophol on the bacteriophage infection in high-temperature environment. Appl Microbiol Biotechnol 99:8101–8111PubMedCrossRefGoogle Scholar
  99. Johnson PT (1984) Viral diseases of marine invertebrates. Helgoländer Meeresuntersuchungen 37:65CrossRefGoogle Scholar
  100. Kapoor A, Victoria J, Simmonds P, Wang C, Shafer RW, Nims R, Nielsen O, Delwart E (2008) A highly divergent picornavirus in a marine mammal. J Virol 82:311–320PubMedCrossRefGoogle Scholar
  101. Kapp M (1998) Viruses infecting marine brown algae. Virus Genes 16:111PubMedCrossRefGoogle Scholar
  102. Karner MB, Delong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409(6819):507–510PubMedPubMedCentralCrossRefGoogle Scholar
  103. Kellogg CA (2010) Enumeration of viruses and prokaryotes in deep-sea sediments and cold seeps of the Gulf of Mexico. Deep-Sea Res II 57(21–23):2002–2007CrossRefGoogle Scholar
  104. Kirchman DL (2000) Microbial ecology of the oceans. Wiley, New YorkGoogle Scholar
  105. Kivela HM, Mannisto RH, Kalkkinen N, Bamford DH (1999) Purification and protein composition of PM2, the first lipid-containing bacterial virus to be isolated. Virology 262:364–374PubMedCrossRefGoogle Scholar
  106. Lang AS, Culley AI, Suttle CA (2004) Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology 320:206–217PubMedCrossRefGoogle Scholar
  107. Lawrence JE, Suttle CA (2004) Effect of viral infection on sinking rates of Heterosigma akashiwo and its implications for bloom termination. Aquat Microb Ecol 37:1–7CrossRefGoogle Scholar
  108. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2017) Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 46:D708–DD17PubMedCentralCrossRefPubMedGoogle Scholar
  109. Leitet C, Riemann L, Hagström Å (2006) Plasmids and prophages in Baltic Sea bacterioplankton isolates. J Mar Biol Assoc UK 86:567–575CrossRefGoogle Scholar
  110. Li H, Zhang X (2005) Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expr Purif 42:153–159PubMedCrossRefGoogle Scholar
  111. Li H, Ji X, Zhou Z, Wang Y, Zhang X (2010) Thermus thermophilus proteins that are differentially expressed in response to growth temperature and their implication in thermoadaptation. J Proteome Res 9:855–864PubMedCrossRefGoogle Scholar
  112. Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438(7064):86–89PubMedCrossRefGoogle Scholar
  113. Liu B, Zhang X (2008) Deep-sea thermophilic Geobacillus bacteriophage GVE2 transcriptional profile and proteomic characterization of virions. Appl Microbiol Biotechnol 80:697–707PubMedPubMedCentralCrossRefGoogle Scholar
  114. Liu B, Wu S, Song Q et al (2006) Two novel bacteriophages of thermophilic bacteria isolated from deep-sea hydrothermal fields. Curr Microbiol 53:163–166PubMedCrossRefGoogle Scholar
  115. Liu B, Wang Y, Zhang X (2006a) Characterization of a recombinant maltogenic amylase from deep sea Thermophilic Bacillus sp. WPD616. Enzym Microb Technol 39:805–810CrossRefGoogle Scholar
  116. Liu B, Li H, Wu S, Zhang X, Xie X (2006b) A simple and rapid method for the differentiation and identification of thermophilic bacteria. Can J Microbiol 52:753–758PubMedCrossRefGoogle Scholar
  117. Liu B, Zhou F, Wu S et al (2009) Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1. Res Microbiol 160:166–171PubMedCrossRefGoogle Scholar
  118. Lossouarn J, Dupont S, Gorlas A, Mercier C, Bienvenu N, Marguet E, Forterre P, Geslin C (2015a) An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents. Res Microbiol 166(10):742–752PubMedCrossRefGoogle Scholar
  119. Lossouarn J, Nesbø CL, Mercier C, Zhaxybayeva O, Johnson MS, Charchuck R, Farasin J, Bienvenu N, Baudoux AC, Michoud G (2015b) Ménage à trois: a selfish genetic element uses a virus to propagate within Thermotogales. Environ Microbiol 17(9):3278PubMedCrossRefGoogle Scholar
  120. Lotz JM, Overstreet RM, Grimes DJ (2005) Aquaculture and animal pathogens in the marine environment with emphasis on marine shrimp viruses. In: Oceans and health: pathogens in the marine environment. Springer, BostonGoogle Scholar
  121. Maness HT, Nollens HH, Jensen ED, Goldstein T, LaMere S, Childress A, Sykes J, St Leger J, Lacave G, Latson FE, Wellehan JF Jr (2011) Phylogenetic analysis of marine mammal herpesviruses. Vet Microbiol 149:23–29PubMedCrossRefGoogle Scholar
  122. Maranger R, Bird DF (1995) Viral abundance in aquatic systems: a comparison between marine and fresh waters. Mar Ecol Prog Ser 121:217–226CrossRefGoogle Scholar
  123. Mari X, Rassoulzadegan F, Brussaard CPD, Wassmann P (2005) Dynamics of transparent exopolymeric particles (TEP) production by Phaeocystis globosa under N- or P-limitation: a controlling factor of the retention/export balance. Harmful Algae 4:895–914CrossRefGoogle Scholar
  124. Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D (1999) Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol 65:45–52PubMedPubMedCentralGoogle Scholar
  125. Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, Schuster SC, Henn MR, Martiny JB (2012) Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci 109:4544PubMedCrossRefGoogle Scholar
  126. Martin A, Yeats S, Janekovic D, Reiter W-D, Aicher W, Zillig W (1984) SAV 1, a temperate uv-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. EMBO J 3:2165–2168PubMedPubMedCentralCrossRefGoogle Scholar
  127. Massana R, Campo JD, Dinter C, Sommaruga R (2007) Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ Microbiol 9:2660–2669PubMedCrossRefGoogle Scholar
  128. McDaniel LD, Paul JH (2006) Temperate and lytic cyanophages from the Gulf of Mexico. J Mar Biol Assoc UK 86:517–527CrossRefGoogle Scholar
  129. McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH (2010) High frequency of horizontal gene transfer in the oceans. Science 330:50–50PubMedCrossRefGoogle Scholar
  130. Mercier C, Lossouarn J, Nesbø CL, Haverkamp THA, Baudoux AC, Jebbar M, Bienvenu N, Thiroux S, Dupont S, Geslin C (2018) Two viruses, MCV1 and MCV2, which infect Marinitoga bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol 20(2):577–587PubMedCrossRefGoogle Scholar
  131. Middelboe M, Jorgensen NOG (2006) Viral lysis of bacteria: an important source of dissolved amino acids and cell wall compounds. J Mar Biol Assoc UK 86:605–612CrossRefGoogle Scholar
  132. Middelboe M, Riemann L, Steward GF, Hansen V, Nybroe O (2003) Virus-induced transfer of organic carbon between marine bacteria in a model community. Aquat Microb Ecol 33:1–10CrossRefGoogle Scholar
  133. Middelboe M, Glud RN, Wenzhöfer F, Oguri K, Kitazato H (2006) Spatial distribution and activity of viruses in the deep-sea sediments of Sagami Bay, Japan. Deep Sea Res I 53:1–13CrossRefGoogle Scholar
  134. Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J (2009) Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties. Environ Microbiol 11:1971–1982PubMedCrossRefGoogle Scholar
  135. Middelburg JJ, Meysman FJR (2007) Burial at Sea. Science 316(5829):1294–1295PubMedCrossRefGoogle Scholar
  136. Miki T, Nakazawa T, Yokokawa T, Nagata T (2008) Functional consequences of viral impacts on bacterial communities: a food-web model analysis. Freshw Biol 53:1142–1153CrossRefGoogle Scholar
  137. Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ (2009) Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ Microbiol 11:2370–2387PubMedCrossRefPubMedCentralGoogle Scholar
  138. Mioni CE, Poorvin L, Wilhelm SW (2005) Virus and siderophore-mediated transfer of available Fe between heterotrophic bacteria: characterization using an Fe-specific bioreporter. Aquat Microb Ecol 41:233–245CrossRefGoogle Scholar
  139. Moebus K, Nattkemper H (1981) Bacteriophage sensitivity patterns among bacteria isolated from marine waters. Helgoländer Meeresuntersuchungen 34:375CrossRefGoogle Scholar
  140. Montanie H, Bossy JP, Bonami JR (1993) Morphological and genomic characterization of two reoviruses (P and W2) pathogenic for marine crustaceans; do they constitute a novel genus of the Reoviridae family? J Gen Virol 74(Pt 8):1555PubMedCrossRefPubMedCentralGoogle Scholar
  141. Munn CB (2006) Viruses as pathogens of marine organisms—from bacteria to whales. J Mar Biol Assoc UK 86:453–467CrossRefGoogle Scholar
  142. Nagata T, Tamburini C, Arístegui J, Baltar F, Bochdansky AB, Fonda-Umani S, Fukuda H, Gogou A, Hansell DA, Hansman RL (2010) Emerging concepts on microbial processes in the bathypelagic ocean-ecology, biogeochemistry, and genomics. Deep Sea Res II 57(16):1519–1536CrossRefGoogle Scholar
  143. Nakajima K, Inouye K, Sorimachi M (1998) Viral diseases in cultured marine fish in Japan. Fish Pathol 33:181–188CrossRefGoogle Scholar
  144. Nishizawa T, Mori K, Furuhashi M, Nakai T, Furusawa I, Muroga K (1995) Comparison of the coat protein genes of five fish nodaviruses, the causative agents of viral nervous necrosis in marine fish. J Gen Virol 63:1563–1569CrossRefGoogle Scholar
  145. Noble RT, Fuhrman JA (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118CrossRefGoogle Scholar
  146. Parada V, Sintes E, Aken HMV, Weinbauer MG, Herndl GJ (2007) Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the North Atlantic. Appl Environ Microbiol 73(14):4429PubMedPubMedCentralCrossRefGoogle Scholar
  147. Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2:579–589PubMedPubMedCentralCrossRefGoogle Scholar
  148. Paul JH, Sullivan MB (2005) Marine phage genomics: what have we learned? Curr Opin Biotechnol 16:299–307PubMedCrossRefGoogle Scholar
  149. Paul JH, Rose JB, Jiang SC, Kellogg CA, Dickson L (1993) Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl Environ Microbiol 59:718–724PubMedPubMedCentralGoogle Scholar
  150. Poorvin L, Rinta-Kanto JM, Hutchins DA, Wilhelm SW (2004) Viral release of iron and its bioavailability to marine plankton. Limnol Oceanogr 49:1734–1741CrossRefGoogle Scholar
  151. Prangishvili D (2013) Viruses of the archaea. In: Brenners encyclopedia of genetics. Elsevier/Academic, Amsterdam, pp 295–298CrossRefGoogle Scholar
  152. Prangishvili D, Arnold HP, Götz D, Ziese U, Holz I, Kristjansson JK, Zillig W (1999) A novel virus family, the Rudiviridae: structure, virus-host interactions and genome variability of the Sulfolobus viruses SIRV1 and SIRV2. Genetics 152:1387–1396PubMedPubMedCentralGoogle Scholar
  153. Proctor LM, Fuhrman JA (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343:60–62CrossRefGoogle Scholar
  154. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie J-M (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306:1344–1350PubMedCrossRefGoogle Scholar
  155. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  156. Rector A, Stevens H, Lacave G, Lemey P, Mostmans S, Salbany A, Vos M, Van DK, Ghim SJ, Rehtanz M (2008) Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the Papillomaviridae. Virology 378:151–161PubMedCrossRefGoogle Scholar
  157. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739PubMedCrossRefPubMedCentralGoogle Scholar
  158. Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212PubMedCrossRefGoogle Scholar
  159. Rohwer F, Segall A, Steward G, Seguritan V, Breitbart M, Wolven F, Farooq Azam F (2000) The complete genomic sequence of the marine phage Roseophage SIO1 shares homology with nonmarine phages. Limnol Oceanogr 45:408–418CrossRefGoogle Scholar
  160. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9(2):99–108PubMedCrossRefGoogle Scholar
  161. Roux S, Tournayre J, Mahul A, Debroas D, Enault F (2014) Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinf 15:1–12CrossRefGoogle Scholar
  162. Sanchez EL, Lagunoff M (2015) Viral activation of cellular metabolism. Virology 479:609–618PubMedCrossRefPubMedCentralGoogle Scholar
  163. Schaffer FL, Bachrach HL, Brown F, Gillespie JH, Burroughs JN, Madin SH, Madeley CR, Povey RC, Scott F, Smith AW, Studdert MJ (1980) Caliciviridae. Intervirology 14:1–6PubMedCrossRefGoogle Scholar
  164. Schütze H (2016) Coronaviruses in aquatic organisms. In: Aquaculture virology. Elsevier, AmsterdamGoogle Scholar
  165. Schwalbach MS, Hewson I, Fuhrman JA (2004) Viral effects on bacterial community composition in marine plankton microcosms. Aquat Microb Ecol 34:117–127CrossRefGoogle Scholar
  166. Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamna-Ismaeel N, Pinter RY, Partensky F, Koonin EV, Wolf YI (2009) Photosystem I gene cassettes are present in marine virus genomes. Nature 461(7261):258–262PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sharon I, Battchikova N, Aro E-M, Giglione C, Meinnel T, Glaser F, Pinter RY, Breitbart M, Rohwer F, Béjà O (2011) Comparative metagenomics of microbial traits within oceanic viral communities. ISME J 5:1178PubMedPubMedCentralCrossRefGoogle Scholar
  168. Silveira CB, Rohwer FL (2016) Piggyback-the-Winner in host-associated microbial communities. NPJ Biofilms Microbiol 2:16010CrossRefGoogle Scholar
  169. Song Q, Zhang X (2008) Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1. BMC Biotechnol 8:43–52PubMedPubMedCentralCrossRefGoogle Scholar
  170. Song Q, Ye T, Zhang X (2011) Proteins responsible for lysogeny of deep-sea thermophilic bacteriophage GVE2 at high temperature. Gene 479:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  171. Song C, Sheng L, Zhang X (2012) Preparation and characterization of a thermostable enzyme (Mn-SOD) immobilized on supermagnetic nanoparticles. Appl Microbiol Biotechnol 96:123–132PubMedCrossRefGoogle Scholar
  172. Song C, Sheng L, Zhang X (2013) Immobilization and characterization of a thermostable lipase. Mar Biotechnol 15(6):659–667PubMedCrossRefGoogle Scholar
  173. Song C, Li H, Sheng L, Zhang X (2015) Characterization of the interaction between superoxide dismutase and 2-oxoisovalerate dehydrogenase. Gene 568:1–7PubMedCrossRefGoogle Scholar
  174. Spencer R (1955) A marine bacteriophage. Nature 175:690–691PubMedCrossRefGoogle Scholar
  175. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346CrossRefGoogle Scholar
  176. Steward GF, Preston CM (2011) Analysis of a viral metagenomic library from 200 m depth in Monterey Bay, California constructed by direct shotgun cloning. Virol J 8:287PubMedPubMedCentralCrossRefGoogle Scholar
  177. Steward GF, Smith DC, Azam F (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131:287–300CrossRefGoogle Scholar
  178. Steward GF, Montiel JL, Azam F (2000) Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol Oceanogr 45:1697–1706CrossRefGoogle Scholar
  179. Steward GF, Culley AI, Mueller JA, Wood-Charlson EM, Belcaid M, Poisson G (2013) Are we missing half of the viruses in the ocean? ISME J 7:672–679PubMedCrossRefGoogle Scholar
  180. Strzepek RF, Maldonado MT, Higgins JL, Hall J, Safi K, Wilhelm SW, Boyd PW (2005) Spinning the & ldquo; ferrous wheel & rdquo;: the importance of the microbial community in an iron budget during the FeCycle experiment. Global Biogeochem Cy 19Google Scholar
  181. Subbiah J (2015) Marine viruses. In: Springer handbook of marine biotechnology. Springer, BerlinGoogle Scholar
  182. Sullivan MB, Waterbury JB, Chisholm SW (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424:1047–1051CrossRefGoogle Scholar
  183. Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW (2005) Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3:e144PubMedPubMedCentralCrossRefGoogle Scholar
  184. Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW (2006) Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4:e234PubMedPubMedCentralCrossRefGoogle Scholar
  185. Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, DeFrancesco AS, Kern SE, Thompson LR, Young S (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12:3035–3056PubMedPubMedCentralCrossRefGoogle Scholar
  186. Sullivan MB, Weitz JS, Wilhelm S (2017) Viral ecology comes of age. Environ Microbiol Rep 9:33PubMedCrossRefGoogle Scholar
  187. Suttle CA (1993) Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 92:99–109CrossRefGoogle Scholar
  188. Suttle CA (1994) The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 28:237–243PubMedCrossRefGoogle Scholar
  189. Suttle CA (2005) Viruses in the sea. Nature 437:356–361CrossRefGoogle Scholar
  190. Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801–812PubMedPubMedCentralCrossRefGoogle Scholar
  191. Suttle CA (2016) Environmental microbiology: viral diversity on the global stage. Nat Microbiol 1:16205PubMedCrossRefGoogle Scholar
  192. Suttle CA, Chan AM, Cottrell MT (1990) Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347:467–469CrossRefGoogle Scholar
  193. Takao Y, Nagasaki K, Mise K, Okuno T, Honda D (2005) Isolation and characterization of a novel single-stranded RNA virus infectious to a marine fungoid protist, Schizochytrium sp. (Thraustochytriaceae, Labyrinthulea). Appl Environ Microbiol 71:4516–4522PubMedPubMedCentralCrossRefGoogle Scholar
  194. Tanaka T, Rassoulzadegan F (2002) Full-depth profile (0–2000 m) of bacteria, heterotrophic nanoflagellates and ciliates in the NW Mediterranean Sea: vertical partitioning of microbial trophic structures. Deep Sea Res II 49(11):2093–2107CrossRefGoogle Scholar
  195. Tétart F, Desplats C, Kutateladze M, Monod C, Ackermann HW, Krisch HM (2001) Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183:358–366PubMedPubMedCentralCrossRefGoogle Scholar
  196. Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45:1320–1328CrossRefGoogle Scholar
  197. Thingstad T, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13:19–27CrossRefGoogle Scholar
  198. Thompson LR (2010) Auxiliary metabolic genes in viruses infecting marine cyanobacteria. Massachusetts Institute of TechnologyGoogle Scholar
  199. Van Bressem M-F, Raga JA (2011) Viruses of cetaceans, studies in viral ecology. Anim Host Sys 2:309–332Google Scholar
  200. Wang Y, Zhang X (2008a) Characterization of a novel portal protein from deep-sea thermophilic bacteriophage GVE2. Gene 421:61–66PubMedCrossRefGoogle Scholar
  201. Wang Y, Zhang X (2008b) Identification and characterization of a novel thymidylate synthase from deep-sea thermophilic bacteriophage Geobacillus virus E2. Virus Genes 37:218–224PubMedCrossRefGoogle Scholar
  202. Wang Y, Zhang X (2010) Genome analysis of deep-sea thermophilic phage D6E. Appl Environ Microbiol 76:7861–7866PubMedPubMedCentralCrossRefGoogle Scholar
  203. Waterbury JB, Valois FW (1993) Resistance to co-occurring phages enables marine synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol 59:3393–3399PubMedPubMedCentralGoogle Scholar
  204. Wei D, Zhang X (2007) Current production by a deep-sea strain Shewanella sp. DS1. Curr Microbiol 55:497–500PubMedCrossRefGoogle Scholar
  205. Wei D, Zhang X (2008) Identification and characterization of a single-stranded DNA-binding protein from thermophilic bacteriophage GVE2. Virus Genes 36:273–278PubMedCrossRefGoogle Scholar
  206. Wei D, Zhang X (2010) Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature. J Virol 84:2365–2373CrossRefGoogle Scholar
  207. Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, King J, Hatfull GF, Lawrence JG, Hendrix RW (2007) Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol 9:1675–1695PubMedCrossRefGoogle Scholar
  208. Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181PubMedPubMedCentralCrossRefGoogle Scholar
  209. Weinbauer MG, Höfle MG (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64:431–438PubMedPubMedCentralGoogle Scholar
  210. Weinbauer MG, Fuks D, Puskaric S, Peduzzi P (1995) Diel, seasonal, and depth-related variability of viruses and dissolved DNA in the Northern Adriatic Sea. Microb Ecol 30:25–41PubMedCrossRefGoogle Scholar
  211. Weinbauer MG, Brettar I, Höfle MG (2003) Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr 48(4):1457–1465CrossRefGoogle Scholar
  212. Weitz J (2017) Quantitative viral ecology: dynamics of viruses and their microbial hosts. Phys Today 70:65–66CrossRefGoogle Scholar
  213. Weitz JS, Wilhelm SW (2012) Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep 4:17PubMedPubMedCentralGoogle Scholar
  214. Wells LE, Deming JW (2006) Significance of bacterivory and viral lysis in bottom waters of Franklin Bay, Canadian Arctic, during winter. Aquat Microb Ecol 43:209–221CrossRefGoogle Scholar
  215. Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G, Schütt C (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64:4128–4133PubMedPubMedCentralGoogle Scholar
  216. Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788CrossRefGoogle Scholar
  217. Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, Winget D, Wommack KE (2008a) Lysogenic virus-host interactions predominate at deep-sea diffuse-flow hydrothermal vents. ISME J 2(11):1112–1121PubMedCrossRefGoogle Scholar
  218. Williamson SJ, Rusch DB, Yooseph S, Halpern AL, Heidelberg KB, Glass JI, Andrews-Pfannkoch C, Fadrosh D, Miller CS, Sutton G (2008b) The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS One 3:e1456PubMedPubMedCentralCrossRefGoogle Scholar
  219. Wilson WH, Joint IR, Carr NG, Mann NH (1993) Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. Strain WH7803. Appl Environ Microbiol 59:3736–3743PubMedPubMedCentralGoogle Scholar
  220. Winter C, Smit A, Herndl GJ, Weinbauer MG (2004) Impact of virioplankton on archaeal and bacterial community richness as assessed in seawater batch cultures. Appl Environ Microbiol 70:804–813PubMedPubMedCentralCrossRefGoogle Scholar
  221. Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 74(1):42–57PubMedPubMedCentralCrossRefGoogle Scholar
  222. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114PubMedPubMedCentralCrossRefGoogle Scholar
  223. Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, Furman M, Jamindar S, Nasko DJ (2012) VIROME: a standard operating procedure for analysis of viral metagenome sequences. Stand Genomic Sci 6:421–433CrossRefGoogle Scholar
  224. Woo PCY, Lau SKP, Lam CSF, Tsang AKL, Hui S-W, Fan RYY, Martelli P, Yuen K-Y (2014) Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus. J Virol 88:1318–1331PubMedPubMedCentralCrossRefGoogle Scholar
  225. Wu S, Liu B, Zhang B (2006) Characterization of a recombinant thermostable xylanase from deep-sea Thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 72:1210–1216PubMedCrossRefGoogle Scholar
  226. Wu S, Liu B, Zhang X (2009) Identification of a tail assembly gene cluster from deep-sea thermophilic bacteriophage GVE2. Virus Genes 38:507–514PubMedCrossRefGoogle Scholar
  227. Wu CW, Zhao XL, Wu XJ, Wen C, Li H, Chen XH, Peng XX (2015) Exogenous glycine and serine promote growth and antifungal activity of Penicillium citrinum W1 from the south-west Indian Ocean. FEMS Microbiol Lett 362:fnv040PubMedGoogle Scholar
  228. Xu C, Sun X, Jin M et al (2017) A novel benzoquinone compound isolated from deep-sea hydrothermal vent triggers apoptosis of tumor cells. Mar Drugs 15:200.  https://doi.org/10.3390/md15070200. CrossRefPubMedCentralPubMedGoogle Scholar
  229. Yan X, Chipman PR, Castberg T, Bratbak G, Baker TS (2005) The marine algal virus PpV01 has an icosahedral capsid with T= 219 quasisymmetry. J Virol 79:9236–9243PubMedPubMedCentralCrossRefGoogle Scholar
  230. Ye T, Zhang X (2008) Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2. Appl Microbiol Biotechnol 78:635–641PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Oceanology and College of Animal SciencesFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.Key Laboratory of Marine Genetic ResourceThird Institute of Oceanography, Ministry of Natural ResourcesXiamenChina
  3. 3.College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations