Skip to main content

Mass Transfer Model of Sputtering from Rod-Like Targets for Synthesis of Multielement Nanocoatings

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

This work develops the mathematical model that allows calculating element concentration depending on substrate location at low working gas pressures for coatings deposited by new magnetron sputtering device on the basis of hollow cathode and rod-like target. In this work, a target composed of two semicylindrical constituents is considered. As the rod-like target can be made of multiple materials in any geometry, the model can be adjusted for any particular case. The calculations explain the general trend of experimental data behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranov O, Bazaka K, Kersten H et al (2017) Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl Phys Rev 4:041302 (1–32)

    Google Scholar 

  2. Levchenko I, Keidar M, Xu S et al (2013) Low-temperature plasmas in carbon nanostructure synthesis. J Vac Sci Technol B 31:050801

    Article  Google Scholar 

  3. Anders A (2010) High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition. Surf Coat Technol 204:2864–2868

    Article  CAS  Google Scholar 

  4. Han JG (2009) Recent progress in thin film processing by magnetron sputtering with plasma diagnostics. J Phys D Appl Phys 42:043001

    Article  Google Scholar 

  5. Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172

    Article  CAS  Google Scholar 

  6. Musil J, Baroch P, Vlcek J et al (2005) Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films 475:208–218

    Article  CAS  Google Scholar 

  7. Perekrestov VI, Mokrenko OA, Kosminska YuO (2010) Sputtering device for deposition highly porous coatings of metals or weakly volatile substances onto flat substrates in vacuum. UA patent 92525

    Google Scholar 

  8. Perekrestov VI, Kosminska YuO, Kornyushchenko AS (2007) Device for deposition of vacuum condensates. UA patent 80775

    Google Scholar 

  9. Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in vacuum. UA patent 57940A

    Google Scholar 

  10. Perekrestov VI, Kosminska YuO, Mokrenko OA, Dyoshin BV (2008) Device for deposition of condensates in a vacuum. UA patent 37359

    Google Scholar 

  11. Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in a vacuum. UA patent 57952

    Google Scholar 

  12. Perekrestov VI, Kosminska YuO (2004) Device for deposition of condensates in a vacuum. UA patent 69723

    Google Scholar 

  13. Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2004) Sputtering device for deposition of condensates in a vacuum. UA patent 69974

    Google Scholar 

  14. Perekrestov VI, Kosminska YuO (2006) Sputtering device for deposition of condensates in a vacuum. UA patent 76257

    Google Scholar 

  15. Glang R (1970) Vacuum evaporation. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 1–130

    Google Scholar 

  16. Depla D, Mahieu S (eds) (2008) Reactive sputter deposition. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  17. Wehner GK, Anderson GS (1970) Physics of sputtering by ion bombardment. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 352–404

    Google Scholar 

  18. Perekrestov VI, Kravchenko SN, Kosminska YuO, Kononenko IN (2011) Structure of Ni–Cu condensates obtained at sputtering of composite rods. Metallofiz Nov Tekh+ 33:203–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Kosminska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kosminska, Y.O., Perekrestov, V.I. (2019). Mass Transfer Model of Sputtering from Rod-Like Targets for Synthesis of Multielement Nanocoatings. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics