Skip to main content

Strain Effect on the Properties of Polar Dielectric Thin Films

  • Conference paper
  • First Online:
Advances in Thin Films, Nanostructured Materials, and Coatings
  • The original version of this chapter was revised: The chapter title has been updated from “Stain Effect on the Properties of Polar Dielectric Thin Films” to “Strain Effect on the Properties of Polar Dielectric Thin Films”. The correction to this chapter is available at https://doi.org/10.1007/978-981-13-6133-3_38

Abstract

Low cost scalable processing and substrates are critical for optimized polar dielectric performance of functional oxide thin films if they are to achieve commercialization. Here, we present a comprehensive investigation of the role low-cost MgO, Al2O3, SrTiO3 and Si substrates on the structural and electrical properties of sol-gel derived SrTiO3 (ST) and K0.5Na0.5NbO3 (KNN) thin films. The substrate is found to have a strong effect on the stress/stain state and, consequently, on the dielectric and ferroelectric response of the films. A tensile stress induced in-plane by the thermal expansion mismatch between the substrates and the films observed for ST and KNN films deposited on platinized Al2O3 and Si substrates, respectively, lowers the relative permittivity and remanent polarization values in the parallel plate capacitor geometry. In contrast, a compressive stress/strain observed for ST films deposited on MgO/Pt and KNN films on SrTiO3/Pt substrates result in superior polarization and dielectric permittivity, corresponding to enhanced out-of-plane displacement of Ti4+ ions in ST films and Nb5+ ions in KNN films. It is thus demonstrated that for polycrystalline polar dielectric thin films the relative permittivity and polarization may be optimized through an induced compressive stress state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 23 March 2023

    In the original version of the book, the title of Chapter “Strain Effect on the Properties of Polar Dielectric Thin Films” has been changed from “Stain Effect on the Properties of Polar Dielectric Thin Films” to “Strain Effect on the Properties of Polar Dielectric Thin Films”. The correction chapter and the book have been updated with the change.

References

  1. Müller KA, Burkard H (1979) SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys Rev B 19:3593–3602

    Article  Google Scholar 

  2. Müller KA (1959) Electron paramagnetic resonance of manganese IV in SrTiO3. Phys Rev Lett 2:341–343

    Article  Google Scholar 

  3. Unoki H, Sakudo T (1967) Electron spin resonance of Fe3+ in SrTiO3 with special reference to the 110°K phase transition. J Phys Soc Jpn 23:546–552

    Article  CAS  Google Scholar 

  4. Shirane G, Yamada Y (1969) Lattice-dynamical study of the 110°K phase transition in SrTiO3. Phys Rev 177:858–863

    Article  CAS  Google Scholar 

  5. Vendik OG, Hollmann EK, Kozyrev AB, Prudan AM (1999) Ferroelectric tuning of planar and bulk microwave devices. J Supercond 12:325–338

    Article  CAS  Google Scholar 

  6. Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) Ferroelectric materials for microwave tunable applications. J Electroceram 11:5–66

    Article  CAS  Google Scholar 

  7. Sirenko AA, Akimov IA, Fox JR, Clark AM, Li H-C, Si W, Xi XX (1999) Observation of the first-order Raman scattering in SrTiO3 thin films. Phys Rev Lett 82:4500–4503

    Article  CAS  Google Scholar 

  8. Pertsev NA, Tagantsev AK, Setter N (2000) Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys Rev B 61:R825–R829

    Article  CAS  Google Scholar 

  9. Astafiev K, Sherman V, Tagantsev A et al (2003) Shift of phase transition temperature in strontium titanate thin films. Integr Ferroelectr 59:1371–1379

    Article  Google Scholar 

  10. Haeni JH, Irvin P, Chang W et al (2004) Room-temperature ferroelectricity in strained SrTiO3. Nature 430:758–761

    Article  CAS  Google Scholar 

  11. Nuzhnyy D, Petzelt J, Kamba S et al (2009) Soft mode behavior in SrTiO3/DyScO3 thin films: evidence of ferroelectric and antiferrodistortive phase transitions. Appl Phys Lett 95:232902

    Article  Google Scholar 

  12. Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696

    Article  CAS  Google Scholar 

  13. Saito Y, Takao H, Tani T et al (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  CAS  Google Scholar 

  14. Rafiq MA, Costa ME, Tkach A, Vilarinho PM (2015) Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst Growth Des 15:1289–1294

    Article  CAS  Google Scholar 

  15. Rafiq MA, Tkach A, Costa ME, Vilarinho PM (2015) Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys Chem Phys 17:24403–24411

    Article  CAS  Google Scholar 

  16. Rodel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35:1659–1681

    Article  Google Scholar 

  17. Tanaka K, Hayashi H, Kakimoto KI, Ohsato H, Iijima T (2007) Effect of (Na,K)—excess precursor solutions on alkoxy-derived (Na,K)NbO3 powders and thin films. Jpn J Appl Phys 46:6964–6970

    Article  CAS  Google Scholar 

  18. Ahn CW, Lee SY, Lee HJ, Bae JS, Jeong ED, Choi JS (2009) The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin film. J Phys D Appl Phys 42:215304

    Google Scholar 

  19. Yan X, Ren W, Wu X, Shi P, Yao X (2010) Lead-free (K,Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties. J Alloy Compd 508:129–132

    Article  CAS  Google Scholar 

  20. Kang C, Park JH, Shen D, Ahn H, Park M, Kim D-J (2010) Growth and characterization of (K0.5Na0.5)NbO3 thin films by a sol-gel method. J Sol-Gel Sci Technol 58:85–90

    Article  Google Scholar 

  21. Kupec A, Malic B, Tellier J, Tchernychova E, Glinsek S, Kosec M (2012) Lead-free ferroelectric potassium sodium niobate thin films from solution: composition and structure. J Am Ceram Soc 95:515–523

    Article  CAS  Google Scholar 

  22. Yu Q, Li J-F, Sun W, Zhou Z, Xu Y, Xie Z-K, Lai F-P, Wang Q-M (2013) Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations. J Appl Phys 113:024101

    Google Scholar 

  23. Vendrell X, Raymond O, Ochoa DA, García JE, Mestres L (2015) Growth and physical properties of highly oriented La-doped (K,Na)NbO3 ferroelectric thin films. Thin Solid Films 577:35–41

    Article  CAS  Google Scholar 

  24. Deng Q, Zhang J, Huang T, Xu L, Jiang K, Li Y, Hu Z, Chu J (2015) Optoelectronic properties and polar nano-domain behavior of sol-gel derived K0.5Na0.5Nb1-xMnxO3-δ nanocrystalline films with enhanced ferroelectricity. J Mater Chem C 3:8225–8234

    Article  CAS  Google Scholar 

  25. Won SS, Lee J, Venugopal V et al (2016) Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl Phys Lett 108:232908

    Google Scholar 

  26. Weng C, Tsai C, Hong C, Lin C (216) Effects of non-stoichiometry on the microstructure, oxygen vacancies, and electrical properties of KNN-based thin films. ECS J. Solid State Sci Technol 5:49–56

    Google Scholar 

  27. Malic B, Razpotnik H, Koruza J, Kokalj S, Cilensek J, Kosec M (2011) Linear thermal expansion of lead-free piezoelectric K0.5Na0.5NbO3 ceramics in a wide temperature range. J Am Ceram Soc 94:2273–2275

    Article  CAS  Google Scholar 

  28. Tkach A, Okhay O, Reaney IM, Vilarinho PM (2018) Mechanical strain engineering of dielectric tunability in polycrystalline SrTiO3 thin films. J Mater Chem C 6:2467–2475

    Article  CAS  Google Scholar 

  29. Okhay O, Tkach A, Wu A, Vilarinho PM (2013) Manipulation of dielectric permittivity of sol-gel SrTiO3 films by deposition conditions. J Phys D Appl Phys 46:505315

    Article  Google Scholar 

  30. Tkach A, Santos A, Zlotnik S, Serrazina R, Okhay O, Bdikin I, Costa ME, Vilarinho PM (2018) Strain-mediated substrate effect on the dielectric and ferroelectric response of potassium sodium niobate thin films. Coatings 8:449

    Google Scholar 

  31. Wachtman JB Jr, Wheat ML, Marzullo S (1963) A method for determining the elastic constants of a cubic crystal from velocity measurements in a single arbitrary direction; application to SrTiO3. J Res NBS 67:A193–A209

    Article  Google Scholar 

  32. Jeager RE, Egerton L (1962) Hot pressing of potassium sodium niobates. J Am Ceram Soc 45:209–213

    Article  Google Scholar 

  33. Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate. J Am Ceram Soc 42:438–442

    Article  CAS  Google Scholar 

  34. Zhang J, Weiss CV, Alpay SP (2011) Effect of thermal stresses on the dielectric properties of strontium titanate thin films. Appl Phys Lett 99:042902

    Article  Google Scholar 

  35. Levin I, Krayzman V, Cibin G, Tucker MG, Eremenko M, Chapman K, Paul RL (2017) Coupling of emergent octahedral rotations to polarization in (K,Na)NbO3 ferroelectrics. Sci Rep 7:15620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement as well as within FCT independent researcher grant IF/00602/2013. M. R. Soares is acknowledged for XRD strain measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tkach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tkach, A. et al. (2019). Strain Effect on the Properties of Polar Dielectric Thin Films. In: Pogrebnjak, A.D., Novosad, V. (eds) Advances in Thin Films, Nanostructured Materials, and Coatings. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6133-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6133-3_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6132-6

  • Online ISBN: 978-981-13-6133-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics