Evaluation of Water Body Extraction from Satellite Images Using Open-Source Tools

  • K. Rithin Paul Reddy
  • Suda Sai Srija
  • R. KarthiEmail author
  • P. Geetha
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 910)


Chennai is a metropolitan city in India. It has many lakes and reservoirs which are changing due to urbanization. Remote sensing and GIS techniques are widely used for water body extraction and water body change detection. This study evaluates water body extraction from satellite images of Chennai city using machine learning methods. Many classifiers are trained to extract water bodies from satellite images. Landsat 5 images of Chennai were taken from USGS Earth Explorer for the year 2009. The study aims to compare the classification results of different machine learning algorithms such as J48 decision tree, naive Bayes, multilayer perceptron, k-nearest neighbor, iso-cluster and random forest in extracting the water bodies. The tools used are ArcGIS for geospatial analysis, Weka tool for classification and R for the visual interpretation of the results. The results illustrate that naive Bayes classifier is able to identify lake regions better when compared to all other classifiers.


Remote sensing Water body extraction Open-source tools Classification 


  1. 1.
    Paul, A., Chowdary, V.M., Dutta, D., Sharma, J.R.: Standalone open-source GIS-based tools for land and water resource development plan generation. In: Environment and Earth Observation, pp. 23–34 Springer, Cham (2017)Google Scholar
  2. 2.
    Balaji, S.A., Geetha, P., Soman, K.P.: Change detection of forest vegetation using remote sensing and GIS techniques in Kalakkad Mundanthurai tiger reserve-(a case study). Indian J. Sci. Technol. 9(30) (2016)Google Scholar
  3. 3.
    Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. Wiley (2014)Google Scholar
  4. 4.
    Kanevski, M., Pozdnukhov, A., Timonin, V.: Machine learning algorithms for geospatial data. Appl. Softw. Tools (2008)Google Scholar
  5. 5.
    Karthi, R., Rajendran, C., Rameshkumar, K.: Neighborhood search assisted particle swarm optimization (npso) algorithm for partitional data clustering problems. In: International Conference on Advances in Computing and Communications, pp. 552–561. Springer, Berlin, Heidelberg. (2011, July)CrossRefGoogle Scholar
  6. 6.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2016)Google Scholar
  7. 7.
    Rokni, K., Ahmad, A., Selamat, A., Hazini, S.: Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sens. 6(5), 4173–4189 (2014)CrossRefGoogle Scholar
  8. 8.
    Du, Z., Bin, L., Ling, F., Li, W., Tian, W., Wang, H., Zhang, X.: Estimating surface water area changes using time-series Landsat data in the Qingjiang River Basin, China. J. Appl. Remote. Sens. 6(1), 063609 (2012)CrossRefGoogle Scholar
  9. 9.
    Elsahabi, M., Negm, A., El Tahan, A.H.M.: Performances evaluation of surface water areas extraction techniques using Landsat ETM + data: case study Aswan High Dam Lake (AHDL). Procedia Technol. 22, 1205–1212 (2016)CrossRefGoogle Scholar
  10. 10.
    Acharya, T.D., Lee, D.H., Yang, I.T., Lee, J.K.: Identification of water bodies in a Landsat 8 OLI image using a j48 decision tree. Sensors 16(7), 1075 (2016)CrossRefGoogle Scholar
  11. 11.
    Yang, Y., Liu, Y., Zhou, M., Zhang, S., Zhan, W., Sun, C., Duan, Y.: Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sens. Environ. 171, 14–32 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhai, K., Wu, X., Qin, Y., Du, P.: Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-Spat. Inf. Sci. 18(1), 32–42 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • K. Rithin Paul Reddy
    • 1
  • Suda Sai Srija
    • 1
  • R. Karthi
    • 1
    Email author
  • P. Geetha
    • 2
  1. 1.Department of Computer Science and EngineeringAmrita School of Engineering, Amrita Vishwa VidyapeethamCoimbatoreIndia
  2. 2.Center for Computational Engineering and Networking (CEN)Amrita School of Engineering, Amrita Vishwa VidyapeethamCoimbatoreIndia

Personalised recommendations