Damage Tolerance Analysis for Repaired Composite Stringer Panels

Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 549)


In this paper, the damage tolerance of repaired composite panels with an M style stringer was analysed through a finite element model. Firstly, an interface unit is introduced to make connection relationship between the panel and stringer. The strength and damage tolerance are analysed by using nonlinear finite element method (FEM). Then the panel laminates with internal presupposition damage are analysed. The damage tolerance is determined under four-point bending load by simulation. Then the failure laminated panel was repaired by patching method. Finally, the structure strength and damage tolerance of the repaired panel with stringer was analysed. The research results can provide some theoretical support for the repair of aircraft composite materials in the future.


Aircraft composites Damage tolerance Repair 


  1. 1.
    Miedlar, P. C., Berens, A. P., Gunderson, A., & Gallagher, J. P. (2002). USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures.Google Scholar
  2. 2.
    Bertolini, J., Castanie, B., Barrau, J. J., et al. (2008). An experimental and numerical study on omega stringer debonding. Composite Structure, 86(1), 233–242.CrossRefGoogle Scholar
  3. 3.
    Davilla, C., & Camanho, P. (2008). Analysis of the effects of residual strains and defects on skin/stiffener debonding using decohesion elements. In AIAA.Google Scholar
  4. 4.
    Krueger, R., Cvitkovich, M. K., O’Brien, T. K., et al. (2000). Testing and analysis of composite skin/stringer debonding under multi-axial loading. Journal of Composite Materials, 34(15), 1263–1300.CrossRefGoogle Scholar
  5. 5.
    Kusugal, S., Kadadevarmath, R. S., & Mallapur, D. G. (2017). Stress and damage tolerance analysis of stiffened panel with passenger door cutout in airframe structure using FEA. Materials Today: Proceedings, 4(10), 10696–10703.Google Scholar
  6. 6.
    Camanho, P. P., & Dávila, C. G. (2002). Mixed-mode decohesion finite elements for the simulation of delamination in composite materials.Google Scholar
  7. 7.
    Reinoso, J., Blázquez, A., Távara, L., et al. (2016). Damage tolerance of composite runout panels under tensile loading. Composites Part B Engineering, 96, 79–93.CrossRefGoogle Scholar
  8. 8.
    Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.CrossRefGoogle Scholar
  9. 9.
    Bazargan, M. (2010). Airline operation and scheduling. Farnham: Ashgate Publishing Limited.Google Scholar
  10. 10.
    Katnam, K. B., Silva, L. F. M. D., & Young, T. M. (2013). Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Progress in Aerospace Sciences, 61, 26–42.CrossRefGoogle Scholar
  11. 11.
    Armstrong, K. B., & Barrett, R. T. (2005). Care and repair of advanced composites. Society of Automotive Engineers.Google Scholar
  12. 12.
    Hibbit, D., Karlsson, B., & Sorenson, P. (2010) ABAQUS analysis user’s manual.Google Scholar
  13. 13.
    Hashin, Z. (1981). Fatigue failure criteria for unidirectional fiber composites. Journal of Applied Mechanics, 47(2), 329–334.CrossRefGoogle Scholar
  14. 14.
    Benzeggagh, M. L., & Kenane, M. (1996). Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56, 439–449.CrossRefGoogle Scholar
  15. 15.
    Hashin, Z., & Rotem, A. (1973). A fatigue criterion for fiber-reinforced materials. Journal of Composite Materials, 7, 448–464.CrossRefGoogle Scholar
  16. 16.
    Wu, Z., & Chen, J. (2017). Research on low speed impact of composite laminated structures based on Hashin criterion. Journal of shenyang university of aeronautics and astronautics, 34(5):12–20 (in Chinese). 吴振, 陈健. 基于Hashin准则的复合材料层合结构低速冲击研究[J]. 沈阳航空航天大学学报, 2017, 34(5)12–20.Google Scholar
  17. 17.
    Barbero, E. J. (2013). Finite element analysis of composite materials using Abaqus™. Boca Raton: CRC press (学习教材).Google Scholar
  18. 18.
    Matzenmiller, A., Lubliner, J., & Taylor, R. L. (1995). A constitutive model for anisotropic damage in fiber-composites. Mechanics of Materials, 20, 125–152.CrossRefGoogle Scholar
  19. 19.
    Sun, J., Zhang, X., & Gong, Z., et al. (2013). Failure mechanism analysis of cap type steel bar debonding of composite materials. Journal of Aeronautics, 34(7), 1616–1626 (in Chinese). 孙 Open image in new window , 张晓 Open image in new window , 宫 Open image in new window 峰,等. 复合材料 Open image in new windowOpen image in new windowOpen image in new window 的失效机理分析[J]. 航空学报, 2013, 34(7)1616-1626.Google Scholar
  20. 20.
    Maimí, P., Camanho, P. P., Mayugo, J. A., et al. (2007). A continuum damage model for composite laminates: Part II – Computational implementation and validation. Mechanics of Materials, 39(10), 909–919.CrossRefGoogle Scholar
  21. 21.
    Caminero, M. A., Rodríguez, G. P., & Muñoz, V. (2016). Effect of stacking sequence on Charpy impact and flexural damage behavior of composite laminates. Composite Structures, 136, 345–357.CrossRefGoogle Scholar
  22. 22.
    Vicente, J. L. M., Moreno, M. C. S., Torija, M. A. C., et al. Multiaxial behavior of notched composite structures manufactured by different procedures.Google Scholar
  23. 23.
    Lapczyk, I., & Hurtado, J. A. (2007). Progressive damage modeling in fiber-reinforced materials. Composites: Part A, 38(11), 2333–2341.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Aeronautics & AstronauticsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations