Skip to main content

A Review of Machine Learning for Healthcare Informatics Specifically Tuberculosis Disease Diagnostics

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 932))

Included in the following conference series:

Abstract

This paper describes the notion of machine learning practices and key technologies for healthcare informatics. We categorize the machine learning techniques applied for Healthcare Informatics into four categories: machine learning types, approaches, learning paradigms and algorithms for healthcare informatics. In this paper, we provide a quick overview of the state-of-the-art, research challenges and future directions, specifically driven to the Tuberculosis disease diagnostics. We highlight the strengths and weaknesses of the machine learning techniques to help the healthcare research community to select the appropriate technique in order to apply in the healthcare domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jadad, A.R., O’Grady, L.: How should health be defined? BMJ: Br. Med. J. (Online) 337 (2008)

    Google Scholar 

  2. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015)

    Google Scholar 

  3. Danish, M.I.: Short Textbook of Medical Diagnosis and Management. Paramount Books, Karachi (2012)

    Google Scholar 

  4. Choi, E., Bahadori, M.T., Schuetz, A., Stewart, W.F., Sun, J.: Doctor AI: predicting clinical events via recurrent neural networks. In: Machine Learning for Healthcare Conference, pp. 301–318 (2016)

    Google Scholar 

  5. Holzinger, A.: Machine learning for health informatics. In: Holzinger, A. (ed.) Machine Learning for Health Informatics. LNCS, vol. 9605, pp. 1–24. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50478-0_1

    Google Scholar 

  6. Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23, 89–109 (2001)

    Google Scholar 

  7. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inf. 3, 119–131 (2016)

    Google Scholar 

  8. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016)

    Google Scholar 

  9. Ilhan, H.O., Celik, E.: The mesothelioma disease diagnosis with artificial intelligence methods. In: 2016 IEEE 10th International Conference on Application of Information and Communication Technologies, AICT, pp. 1–5. IEEE (2016)

    Google Scholar 

  10. Gu, Q., Ding, Y.S., Zhang, T.L.: An ensemble classifier based prediction of G-protein-coupled receptor classes in low homology. Neurocomputing 154, 110–118 (2015)

    Google Scholar 

  11. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  12. Parmar, C., Grossmann, P., Bussink, J., Lambin, P., Aerts, H.J.: Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 5, 13087 (2015)

    Google Scholar 

  13. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  14. Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016)

    Google Scholar 

  15. Krishnapuram, B., Williams, D., Xue, Y., Carin, L., Figueiredo, M., Hartemink, A.J.: On semi-supervised classification. In: Advances in Neural Information Processing Systems, pp. 721–728 (2005)

    Google Scholar 

  16. Wang, Z., Shah, A.D., Tate, A.R., Denaxas, S., Shawe-Taylor, J., Hemingway, H.: Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning. PLoS One 7, e30412 (2012)

    Google Scholar 

  17. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    Google Scholar 

  18. Tayefi, M., et al.: hs-CRP is strongly associated with coronary heart disease (CHD): a data mining approach using decision tree algorithm. Comput. Methods Programs Biomed. 141, 105–109 (2017)

    Google Scholar 

  19. Abdar, M., Zomorodi-Moghadam, M., Das, R., Ting, I.H.: Performance analysis of classification algorithms on early detection of liver disease. Expert Syst. Appl. 67, 239–251 (2017)

    Google Scholar 

  20. Shouman, M., Turner, T., Stocker, R.: Using decision tree for diagnosing heart disease patients. In: Proceedings of the Ninth Australasian Data Mining Conference, vol. 121, pp. 23–30. Australian Computer Society, Inc. (2011)

    Google Scholar 

  21. Shmilovici, A.: Support vector machines. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 231–247. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_12

    Google Scholar 

  22. Polat, K., Güneş, S., Arslan, A.: A cascade learning system for classification of diabetes disease: generalized discriminant analysis and least square support vector machine. Expert Syst. Appl. 34, 482–487 (2008)

    Google Scholar 

  23. Magnin, B., et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51, 73–83 (2009)

    Google Scholar 

  24. Huang, C.L., Liao, H.C., Chen, M.C.: Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Syst. Appl. 34, 578–587 (2008)

    Google Scholar 

  25. Zhang, H.: The optimality of Naive Bayes. AA 1, 3 (2004)

    Google Scholar 

  26. Kazmierska, J., Malicki, J.: Application of the Naïve Bayesian classifier to optimize treatment decisions. Radiother. Oncol. 86, 211–216 (2008)

    Google Scholar 

  27. Pattekari, S.A., Parveen, A.: Prediction system for heart disease using Naïve Bayes. Int. J. Adv. Comput. Math. Sci. 3, 290–294 (2012)

    Google Scholar 

  28. Bhuvaneswari, R., Kalaiselvi, K.: Naive Bayesian classification approach in healthcare applications. Int. J. Comput. Sci. Telecommun. 3, 106–112 (2012)

    Google Scholar 

  29. Kurt, I., Ture, M., Kurum, A.T.: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 34, 366–374 (2008)

    Google Scholar 

  30. Thirumalai, C., Manzoor, R.: Cost optimization using normal linear regression method for breast cancer Type I skin. In: 2017 International Conference of Electronics, Communication and Aerospace Technology, ICECA, vol. 2, pp. 264–268. IEEE (2017)

    Google Scholar 

  31. Saleheen, D., et al.: Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study. Lancet Diab. Endocrinol. 3, 507–513 (2015)

    Google Scholar 

  32. Chen, H.L., et al.: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40, 263–271 (2013)

    Google Scholar 

  33. Deekshatulu, B., Chandra, P., et al.: Classification of heart disease using k-nearest neighbor and genetic algorithm. Proc. Technol. 10, 85–94 (2013)

    Google Scholar 

  34. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651–666 (2010)

    Google Scholar 

  35. Zheng, B., Yoon, S.W., Lam, S.S.: Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms. Expert Syst. Appl. 41, 1476–1482 (2014)

    Google Scholar 

  36. Escudero, J., Zajicek, J.P., Ifeachor, E.: Early detection and characterization of Alzheimer’s disease in clinical scenarios using Bioprofile concepts and k-means. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 6470–6473. IEEE (2011)

    Google Scholar 

  37. Oreski, S., Oreski, G.: Genetic algorithm-based heuristic for feature selection in credit risk assessment. Expert Syst. Appl. 41, 2052–2064 (2014)

    Google Scholar 

  38. Guo, H., Zhang, L., Zhang, L., Zhou, J.: Optimal placement of sensors for structural health monitoring using improved genetic algorithms. Smart Mater. Struct. 13, 528 (2004)

    Google Scholar 

  39. Shah, S., Kusiak, A.: Cancer gene search with data-mining and genetic algorithms. Comput. Biol. Med. 37, 251–261 (2007)

    Google Scholar 

  40. Yan, H., Zheng, J., Jiang, Y., Peng, C., Xiao, S.: Selecting critical clinical features for heart diseases diagnosis with a real-coded genetic algorithm. Appl. Soft Comput. 8, 1105–1111 (2008)

    Google Scholar 

  41. Amato, F., López, A., Peña-Méndez, E.M., Vaňhara, P., Hampl, A., Havel, J.: Artificial neural networks in medical diagnosis (2013)

    Google Scholar 

  42. Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif. Intell. Med. 25, 265–281 (2002)

    Google Scholar 

  43. Raith, S., et al.: Artificial Neural Networks as a powerful numerical tool to classify specific features of a tooth based on 3D scan data. Comput. Biol. Med. 80, 65–76 (2017)

    Google Scholar 

  44. Bhardwaj, A., Tiwari, A.: Breast cancer diagnosis using genetically optimized neural network model. Expert Syst. Appl. 42, 4611–4620 (2015)

    Google Scholar 

  45. Ravı, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inf. 21, 4–21 (2017)

    Google Scholar 

  46. Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI, pp. 1015–1018. IEEE (2014)

    Google Scholar 

  47. Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190–198 (2017)

    Google Scholar 

  48. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Google Scholar 

  49. Tu, M.C., Shin, D., Shin, D.: Effective diagnosis of heart disease through bagging approach. In: 2nd International Conference on Biomedical Engineering and Informatics, BMEI 2009, pp. 1–4. IEEE (2009)

    Google Scholar 

  50. Morra, J.H., Tu, Z., Apostolova, L.G., Green, A.E., Toga, A.W., Thompson, P.M.: Comparison of AdaBoost and support vector machines for detecting Alzheimer’s disease through automated hippocampal segmentation. IEEE Trans. Med. Imag. 29, 30–43 (2010)

    Google Scholar 

  51. Kumar, P., Clark, M.L.: Kumar and Clark’s Clinical Medicine E-Book. Elsevier Health Sciences, Amsterdam (2012)

    Google Scholar 

  52. Yahiaoui, A., Er, O., Yumusak, N.: A new method of automatic recognition for tuberculosis disease diagnosis using support vector machines. Biomed. Res. 28 (2017)

    Google Scholar 

  53. Er, O., Yumusak, N., Temurtas, F.: Diagnosis of chest diseases using artificial immune system. Expert Syst. Appl. 39, 1862–1868 (2012)

    Google Scholar 

  54. Alcantara, M.F., et al.: Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor communities in Peru. Smart Health 1, 66–76 (2017)

    Google Scholar 

  55. Er, O., Yumusak, N., Temurtas, F.: Chest diseases diagnosis using artificial neural networks. Expert Syst. Appl. 37, 7648–7655 (2010)

    Google Scholar 

Download references

Acknowledgments

PriyankaÅ› work was supported for her MPhil studies at IMCS, University of Sindh, Jamshoro, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priyanka Karmani or Aftab Ahmed Chandio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karmani, P., Chandio, A.A., Korejo, I.A., Chandio, M.S. (2019). A Review of Machine Learning for Healthcare Informatics Specifically Tuberculosis Disease Diagnostics. In: Bajwa, I., Kamareddine, F., Costa, A. (eds) Intelligent Technologies and Applications. INTAP 2018. Communications in Computer and Information Science, vol 932. Springer, Singapore. https://doi.org/10.1007/978-981-13-6052-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6052-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6051-0

  • Online ISBN: 978-981-13-6052-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics