Skip to main content

Enhanced Medical Image De-noising Using Auto Encoders and MLP

  • Conference paper
  • First Online:
Intelligent Technologies and Applications (INTAP 2018)

Abstract

Preserving the original characteristics of an image which is transmitted across a channel having different kinds of noise (i.e., either, uniform, linear or Gaussian noise) is a crucial task, hence it has become a state of art for the researchers in retrieving the original characteristics of the image by using different denoising and image retrieving techniques. In earlier, many techniques have been proposed such as patch wise denoising (e.g., Sliding Window), block matching (e.g., BM3D), shallow and wide deep learning algorithms which achieved a promising accuracy, yet failing in preserving the prominent characteristics of an image which is a crucial task in Bio-Medical Instrumentation systems. So, we proposed few algorithms which could preserve the smallest possibilities of denoising the medical images and achieved a maximum accuracy of 99.98% for SDAE (In Tensorflow Background), 99.97% for SDAE (In Theano Background) and 99.99% for Multi-Layer Perception (MLP) technique and later compared these with the accuracies of the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris, Jr, F.C.: Survey of Image Denoising Techniques

    Google Scholar 

  2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image Denoising by Sparrse 3-D Transform-Domain Collaborative Filtering. IEEE Transactions on Image Processing 16(8) (2007)

    Google Scholar 

  3. Talebi, H., Milanfar, P.: Gloobal image denoising. IEEE Trans. Image Process. 23(2) (2014)

    Google Scholar 

  4. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D?. 978-1-4673-1228-8/12/$31.00 ©2012 IEEE

    Google Scholar 

  5. Nishio, M., et al.: Convolutional auto-encoder for image denoising of ultra-low-dose CT. 2405-8440/© 2017, ELSEVIER

    Google Scholar 

  6. Gondara, L.: Medical image denoising using convolutional denoising auto encoders. In: 2016 IEEE 16th International Conference on Data Mining Workshops (2016)

    Google Scholar 

  7. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Google Scholar 

  8. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6) (2018)

    Google Scholar 

  9. Wolterink, J.M., et al.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017). https://doi.org/10.1109/TMI.2017.2708987. Epub 2017 May 26

    Google Scholar 

  10. Yan, Q., et al.: DCGANs for image super-resolution, denoising and debluring

    Google Scholar 

  11. Chen, J., et al.: Image blind denoising with generative adversarial network BasedNoise modeling

    Google Scholar 

  12. Tripathi, S., et al.: Correction by Projection: Denoising Images with Generative Adversarial Networks, arXiv:1803.04477

  13. Bengio, Y., et al.: Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, vol. 19, p. 153 (2007)

    Google Scholar 

  14. Agostinelli, F., Anderson, M.R., Lee, H.: Adaptive multi-column deep neural networks with application to robust image denoising. In: Advances in Neural Information Processing Systems (2013)

    Google Scholar 

  15. Cho, K.: Boltzmann machines and denoising autoencoders for image denoising. arXiv preprint arXiv:1301.3468 (2013)

  16. Coifman, R.R., Donoho, D.L.: Translation-Invariant Denoising. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-2544-7_9

    Google Scholar 

  17. Dabov, K., et al.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Google Scholar 

  18. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on IEEE Computer Vision and Pattern Recognition, CVPR 2009 (2009)

    Google Scholar 

  19. Elad, M., Aharon, M.: Immage denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–37445 (2006)

    Google Scholar 

  20. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Aistats, vol. 15, no. 106 (2011)

    Google Scholar 

  21. Hinton, G., et al.: Deep neural networks for acoustic modelling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Google Scholar 

  22. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems (2009)

    Google Scholar 

  23. Suckling, J., et al.: The mammographic image analysis society digital mammogram database Exerpta Medica. Int. Congr. Ser. 1069, 375–378 (1994)

    Google Scholar 

  24. Krizhevsky, A., Ilya S., Geoffrey E.H.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  25. Mairal, J., et al.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning. ACM (2009)

    Google Scholar 

  26. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Google Scholar 

  27. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)

    Google Scholar 

  28. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Google Scholar 

  29. Portilla, J., et al.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Google Scholar 

  30. Rudin, L.I., Osher, S.: Total variation based image restoration with free local constraints. In: Proceedings of IEEE International Conference on Image Processing, ICIP 1994, vol. 1. IEEE (1994)

    Google Scholar 

  31. Sanches, J.M., Nascimento, J.C., Marques, J.S.: Medical image noise reduction using the SylvesterLyapunov equation. IEEE Trans. Image Process. 17(9), 1522–1539 (2008)

    Google Scholar 

  32. Subakan, O., et al.: Feature preserving image smoothing using a continuous mixture of tensors. In: 2007 IEEE 11th International Conference on Computer Vision. IEEE (2007)

    Google Scholar 

  33. Sutskever, I., Oriol, V., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  34. Vincent, P., et al.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning. ACM (2008)

    Google Scholar 

  35. Vincent, P., et al.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    Google Scholar 

  36. Wang, C.-W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)

    Google Scholar 

  37. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  38. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  39. Yaroslavsky, L.P., Egiazarian, K.O., Astola, J.T.: Transform domain image restoration methods: review, comparison, and interpretation. In: Photonics West 2001-Electronic Imaging. International Society for Optics and Photonics (2001)

    Google Scholar 

  40. Zhang, D., Wang, Z.: Image information restoration based on long-range correlation. IEEE Trans. Circ. Syst. Video Technol. 12(5), 331–341 (2002)

    Google Scholar 

  41. Chollet, F.: Keras, GitHub repository (2015). https://github.com/fchollet/keras

  42. Introduction Auto-Encoder, wikidocs. Stacked Denoising Auto-Encoder (SdA). https://wikidocs.net/3413

  43. Image Denoising with Generative Adversarial Network. https://github.com/manumathewthomas/ImageDenoisingGAN

  44. Wang, X., et al.: Image denoising based on translation invariant directional lifting. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (2010)

    Google Scholar 

  45. Thote, B.K., et al.: Improved denoising technique for natural and synthetic images. In: 2016 International Conference on Signal and Information Processing (IconSIP) (2016)

    Google Scholar 

  46. Vyas, A., et al.: Applications of multiscale transforms to image denoising: survey. In: 2018 International Conference on Electronics, Information, and Communication (ICEIC) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seshadri Sastry Kunapuli , Praveen Chakravarthy Bh or Upasana Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kunapuli, S.S., Bh, P.C., Singh, U. (2019). Enhanced Medical Image De-noising Using Auto Encoders and MLP. In: Bajwa, I., Kamareddine, F., Costa, A. (eds) Intelligent Technologies and Applications. INTAP 2018. Communications in Computer and Information Science, vol 932. Springer, Singapore. https://doi.org/10.1007/978-981-13-6052-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6052-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6051-0

  • Online ISBN: 978-981-13-6052-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics