Integrated Management of Rice Blast Caused by Magnaporthe oryzae

  • Manish Kumar
  • Shabbir Ashraf


Rice (Oryza sativa L.) is the world’s most important crop and is considered to be a primary source of food for over half of the world’s population. In 2017, rice cultivation globally occupied an area of 166 m ha, with a production of 758.8 m t of paddy. More than 90% of the world’s rice crop is consumed in Asian countries, which account for about 60% of the earth’s population. Rice blast caused by the fungus Magnaporthe oryzae is one of the most severe diseases of rice. This pathogen is highly variable in nature. It attacks all developmental stages of rice, causing losses of around 10–30% annually in different rice-producing areas. The pathogen can infect several organs of the rice plant, such as the leaves, collars, necks, and panicles. Chemical agents have been used to combat several soil borne pathogens including Magnaporthe oryzae, but our environment is severely degraded by the use of chemicals that pollute the atmosphere and leave harmful effects. The excessive use of pesticides is responsible for the degradation of soil conditions, but this degradation can be limited by the use of targeted bioagents that are antagonistic to pathogens. The reduction of chemical pesticide use in agriculture is achieved by the integration of biocontrol agents, botanicals, and minimum doses of chemicals. Various management strategies, such as the controlled use of nitrogen fertilizers, the application of silica, and the flooding of fields have been used for a long time to control rice blast disease. Scientists are keen to develop durable resistant rice varieties through the pyramiding of quantitative trait loci and major genes. New strategies, such as the characterization of the R and Avr genes of rice, and biotechnological approaches that lead to the development of resistant cultivars should act against rice blast disease. However, the exploitation of durable host resistance remains a challenge for plant pathologists.


Rice Magnaporthe oryzae Management Pathogens Productivity 


  1. Amante-Bordeos, A., Sitch, L. A., Nelson, R., Damacio, R. D., Oliva, N. P., Aswidinnoor, H., & Leung, H. (1992). Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice. Oryza sativa. Theoretical and Applied Genetics, 84, 345–354.PubMedCrossRefGoogle Scholar
  2. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.CrossRefGoogle Scholar
  3. Aravindan, S., Yadav, M. K., & Sharma, P. (2016). Biological control of rice blast disease with Trichoderma spp. under upland rice system. ORYZA-An International Journal on Rice, 53(2), 167–173.Google Scholar
  4. Barea, J. M., Azcon, R., & Azcon-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek International Journal of General and Molecular, 81, 343–351.CrossRefGoogle Scholar
  5. Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Mecanismos de biocontrol de cepas de Trichoderma. International Microbiology, 7(4), 249–260.PubMedGoogle Scholar
  6. Chen, D. H., Dela Vina, M., Inukai, T., Mackill, D. J., Ronald, P. C., & Nelson, R. J. (1999). Molecular mapping of the blast-resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theoretical and Applied Genetics, 98, 1046–1053.CrossRefGoogle Scholar
  7. Choi, W., Park, E., & Lee, E. (1988). LEAFBLAST-A computer simulation model for leaf blast development on rice. Korean Journal of Plant Pathology (Korea R.), 4, 25–32.Google Scholar
  8. Datnoff, L. E., Deren, C. W., & Snyder, G. H. (1997). Silicon fertilization for disease management of rice in Florida. Crop Protection, 16(6), 525–531.CrossRefGoogle Scholar
  9. de Jong, J. C., McCormack, B. J., Smirnoff, N., & Talbot, N. J. (1997). Glycerol generates turgor in rice blast. Nature, 389, 244–244.CrossRefGoogle Scholar
  10. Dean, R. A. (1997). Signal pathways and appressorium morphogenesis. Annual Review of Phytopathology, 35(1), 211–234.PubMedCrossRefGoogle Scholar
  11. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., & Pan, H. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 434(7036), 980–986.PubMedCrossRefGoogle Scholar
  12. Deng, Y., Zhu, X., Shen, Y., & He, Z. (2006). Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theoretical and Applied Genetics, 113, 705–713.PubMedCrossRefGoogle Scholar
  13. Dwinita, W. U., Sugiono, M., Hajrial, A., Asep, S., & Ida, H. (2008). Blast resistance genes in wild rice Oryza rufipogon and rice cultivar IR64. Indian Journal of Agriculture, 1, 71–76.Google Scholar
  14. Fitzsimons, M. S., & Miller, R. M. (2010). The importance of soil microorganisms for maintaining diverse plant communities in tall grass prairie. American Journal of Botany, 97, 1937–1943.PubMedCrossRefGoogle Scholar
  15. Flor, H. H. (1955). Host-parasite interaction in flax rust–its genetics and other implications. Phytopathology, 45, 680–685.Google Scholar
  16. Fukunaga, K., Misato, T., Ishii, I., Asakawa, M., & Katagiri, M. (1968). Research and development of antibiotics for rice blast control. Bulletin of the National Institute of Agricultural Sciences Tokyo, 22, 1–94.Google Scholar
  17. Gnanamanickam, S. S., & Mew, T. W. (1992). Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Japanese Journal of Phytopathology, 58(3), 380–385.CrossRefGoogle Scholar
  18. Gnanamanickam, S. S., Reyes, R. C., & Mew, T. W. (1989). Biological control of rice blast using antagonistic bacteria. Philippine Phytopathology (Philippines).Google Scholar
  19. Hamer, J. E., Howard, R. J., Chumley, F. G., & Valent, B. (1988). A mechanism for surface attachment in spores of a plant pathogenic fungus. Science, 239(4837), 288–290.PubMedCrossRefGoogle Scholar
  20. Harada, Y. (1955). Studies on a new antibiotic for rice blast control. In Lecture given at the annual meeting of the Agricultural Chemical Society of Japan.Google Scholar
  21. Hori, S. (1898) Blast disease of rice plants (Special Report, Vol. 1, pp. 1–36). Imperial Agricultural Experimental Station, Tokyo.Google Scholar
  22. Hori, M., Arata, T., & Inoue, Y. (1960). Studies on the forecasting method of blast disease. VI. Forecasting by the degree of accumulated starch in the sheath of rice plant. Annals of the Phytopathological Society of Japan, 25(1), 2.Google Scholar
  23. Ito, S., & Sakamoto, M. (1939) Studies on rice blast. Res. Hokkaido Univ. Bot. Lab. Fac. Agric. Rep., p. 1943.Google Scholar
  24. Jamalizadeh, M., Etebarian, H. R., Aminian, H., & Alizadeh, A. (2011). A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bulletin, 41(1), 65–71.CrossRefGoogle Scholar
  25. Jena, K. K., Multani, G. S., Khush, G. S. (1991). Monogenic alien addition lines of Oryza australiensis and alien gene transfer. Rice Genet II:728.Google Scholar
  26. Jones, D. J., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–328.PubMedCrossRefGoogle Scholar
  27. Kahn, R. P., & Libby, J. L. (1958). The effect of environmental factors and plant age on the infection of rice by the blast fungus, Pyricularia oryzae. Phytopathology, 48, 25–30.Google Scholar
  28. Kang, S., Sweigard, J. A., & Valent, B. (1995). The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 8, 939–948.PubMedCrossRefGoogle Scholar
  29. Katagiri, M., & Uesugi, Y. (1978). In vitro selection of mutants of Pyricularia oryzae resistant to fungicides. Japanese Journal of Phytopathology, 44(2), 218–219.CrossRefGoogle Scholar
  30. Kawamura, E., & Ono, K. (1948). Study on the relation between the pre-infection behavior of rice blast fungus, Pyricularia oryzae, and water droplets on rice plant leaves. Bulletin of the National Agricultural Experiment Station, 4, 1–12.Google Scholar
  31. Kawashima, R. (1927). Influence of silica on rice blast disease. Japanese Journal of Soil Science and Plant Nutrition, 1, 86–91.Google Scholar
  32. Kim, C. K., & Kim, C. H. (1993). The rice leaf blast simulation model EPIBLAST. In Systems approaches for agricultural development (pp. 309–321). Dordrecht: Springer.Google Scholar
  33. Kole, C. (2006). Cereals and millets (Vol. 1). New York: Springer.CrossRefGoogle Scholar
  34. Kumar, P., Pathania, S., Katoch, P., Sharma, T. R., Plaha, P., & Rathour, R. (2010). Genetic and physical mapping of blast resistance gene Pi-42(t) on the short arm of rice chromosome 12. Molecular Breeding, 25, 217–228.CrossRefGoogle Scholar
  35. Kumar, V., Kumar, A., Singh, V. P., & Tomar, A. (2017). Effectiveness measurement of bio-agents and botanicals against Pyricularia oryzae. Journal of Pure and Applied Microbiology, 11(1), 585–592.CrossRefGoogle Scholar
  36. Lau, J. A., & Lennon, J. T. (2011). Evolutionary ecology of plant-microbe interactions: Soil microbial structure alters selection on plant traits. The New Phytologist, 192, 215–224.PubMedCrossRefGoogle Scholar
  37. Link, K. C., & Ou, S. H. (1969). Standardization of the international race numbers of Pyricularia oryzae. Phytopathology, 59, 339–342.Google Scholar
  38. Liu, B., Zhang, S., Zhu, X., Yang, Q., Wu, S., Mei, M., Mauleon, R., Leach, J., Mew, T., & Leung, H. (2004). Candidate defense genes as predictors of quantitative blast resistance in rice. Molecular Plant-Microbe Interactions, 17, 1146–1152.PubMedCrossRefGoogle Scholar
  39. Liu, X. Q., Wang, L., Chen, S., Lin, F., & Pan, Q. H. (2005). Genetic and physical mapping of Pi36(t), a novel rice blast resistance gene located on rice chromosome 8. Molecular Genetics and Genomics, 274, 394–401.PubMedCrossRefGoogle Scholar
  40. Manibhushanrao, K., & Krishnan, P. (1991). Epidemiology of blast (EPIBLA): A simulation model and forecasting system for tropical rice in India (pp. 31–38). Manila: Rice Blast Modeling and Forecasting IRRI.Google Scholar
  41. Manjappa, K. (2013). Evaluation of antifungal properties of Eupatorium (Chromolaena odorata L.) plant Extract against Pyricularia oryzae causing blast disease in rice crop. Asian Journal of Pharmaceutical Science and Technology, 5(1), 79–81.Google Scholar
  42. Miyake, K., & Ikeda, M. (1932). Influence of silica application on rice blast. Japanese Journal of Soil Science and Plant Nutrition, 6, 53–76.Google Scholar
  43. Mu, C., Liu, X., Lu, Q., Jiang, X., & Zhu, C. (2007). Biological control of rice blast by Bacillus subtilis B-332 strain. Acta Phytophylacica Sinica, 34(2), 123–128.Google Scholar
  44. Ogawa, M. (1953). Studies on blast control of Ceresan lime. Ohugoku-Shikoku Agricultural Resesearch, 3, 1–5.Google Scholar
  45. Okamoto, M. (1972). On the characteristics of Kasumin, antibiotic fungicide. Japan Pesticide Information, 10, 66–69.Google Scholar
  46. Olufolaji, D. B., Adeosun, B. O., & Onasanya, R. O. (2015). In vitro investigation on antifungal activity of some plant extracts against Pyricularia oryzae. Nigerian Journal of Biotechnology, 29(1), 38–43.CrossRefGoogle Scholar
  47. Onodera, I. (1917). Chemical studies on rice blast (Dactylaria parasitance Cavara). Journal of Scientific Agricultural Society, 180, 606–617.Google Scholar
  48. Ou, S. H. (1971). A Type of Stable Resistance to Blast Disease of Rice. Phytopathology, 61(6), 703.CrossRefGoogle Scholar
  49. Ou, S. H. (1985). Rice diseases. Manila: International Rice Research Institute.Google Scholar
  50. Ou, S. H. (1987). Bacterial disease. Rice disease (pp. 66–96). Tucson: CAB International.Google Scholar
  51. Padmanabhan, S. (1963). The role of therapeutic treatments in plant disease control with special reference to rice diseases. Indian Phytopathology Society Bulletin, 1, 79–84.Google Scholar
  52. Pan, H. Q., Tanisaka, T., & Ikehashi, H. (1996). Studies on the genetics and breeding of blast resistance in rice VI. Gene analysis of the blast resistance of two Yunnan native cultivars GA20 and GA25. Breeding Science, 46(2), 70.Google Scholar
  53. Parimelazhagan, T. (2001). Botanical fungicide for the control of rice blast disease. Bioved, 12(1/2), 11–15.Google Scholar
  54. Pinnschmidt, H. O., Bonman, J. M., & Kranz, J. (1995). Lesion development and sporulation of rice blast. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 102, 299–306.Google Scholar
  55. Plank, J. V. D. (1963). Plant diseases: epidemics and control. Plant diseases: epidemics and control.Google Scholar
  56. Pooja, K., & Katoch, A. (2014). Past, present and future of rice blast management. Plant Science Today, 1, 165–173.CrossRefGoogle Scholar
  57. Pozo, M. J., & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology, 10(4), 393–398.PubMedCrossRefGoogle Scholar
  58. Prabhu A. S., & Morais O. P. (1986). Blast disease management in upland rice in Brazil. In Progress in upland rice research. Proceedings of the 1985 Jakarta conference, pp. 383–382.Google Scholar
  59. Ram, T., Majumder, N. D., Mishra, B., Ansari, M. M., & Padmavathi, G. (2007). Introgression of broad-spectrum blast resistance gene(s) into cultivated rice (Oryza sativa ssp indica) from wild rice O. rufipogon. Current Science, 92, 225–230.Google Scholar
  60. Refaei, M. I. (1977). Epidemiology of rice blast disease in the tropics with special reference to the leaf wetness in relation to disease development. Doctoral dissertation, IARI, Division of Plant Pathology, New Delhi.Google Scholar
  61. Roumen, E. C. (1992). Partial resistance to neck blast influenced by stage of panicle development and rice genotype. Euphytica, 64, 173–182.CrossRefGoogle Scholar
  62. Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Svestasrani, P., Garsmeur, O., Ghesquiere, A., & Notteghem, J. L. (2003). Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theoretical and Applied Genetics, 106, 794–803.PubMedCrossRefGoogle Scholar
  63. Sesma, A., & Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431(7008), 582–586.PubMedCrossRefGoogle Scholar
  64. Sharma, T. R., Madhav, M. S., Singh, B. K., Shanker, P., Jana, T. K., Dalal, V., Pandit, A., Singh, A., Gaikwad, K., Upreti, H. C., & Singh, N. K. (2005). High-resolution mapping, cloning and molecular characterization of the Pik (h) gene of rice, which confers resistance to Magnaporthe grisea. Molecular Genetics and Genomics, 274, 569–578.PubMedCrossRefGoogle Scholar
  65. Siddiq, E. A. (1996). Current status and future outlook for hybrid rice technology in India. In Hybrid rice technology (pp. 1–27). Hyderabad: ICAR, Directorate of Rice Research.Google Scholar
  66. Sitch, L. A., Amante, A. D., Dalmacio, R. D., & Leung, H. (1989). Oryza minuta, a source of blast and bacterial blight resistance for rice improvement. In A. Mujeeb-Kazi & L. A. Sitch (Eds.), Review of advances in plant biotechnology (pp. 315–322). Mexico/Manila: CIMMYT/IRRI.Google Scholar
  67. Skamnioti, P., & Gurr, S. J. (2009). Against the grain: safeguarding rice from rice blast disease. Trends in Biotechnology, 27, 141–150.PubMedCrossRefGoogle Scholar
  68. Someya, N., Nakajima, M., Hamamoto, H., Yamaguchi, I., & Akutsu, K. (2004). Effects of light conditions on prodigiosin stability in the biocontrol bacterium Serratia marcescens strain B2. Journal of General Plant Pathology, 70(6), 367–370.CrossRefGoogle Scholar
  69. Suwarno, S., Lubis, E., & Soenarjo, E. (2001). Breeding of upland rice in Indonesia. In M. Kosim Kardin, I. Prasadja, & M. (e.) Syam (Eds.), Upland rice research in Indonesia (Current status and future Directions) (pp. 1–6). Bogor: Central Research Institute for Food Crops, Agency for Agricultural Research and Development.Google Scholar
  70. Suzuki, H. (1954). Studies on antiblastin (I-IV). Annals of the Phytopathological Society of Japan, 18, 138.Google Scholar
  71. Sweigard, J. A., Carroll, A. M., Kang, S., Farrall, L., Chumley, F. G., & Valent, B. (1995). Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 7, 1221–1233.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Tabien, R. E., Pinson, S. R. M., Marchetti, M. A., Li, Z., Park, W. D., Paterson, A. H., & Stansel, J. W. (1996). Blast resistance genes from Teqing and Lemont. In G. S. Khush (Ed.), Rice genetics III. Proceedings of third international rice genetics symposium, Oct 16–20 (pp. 451–455). Manila: International Rice Research Institute.Google Scholar
  73. Tabien, R. E., Li, Z., Paterson, A. H., Marchetti, M. A., Stansel, J. W., & Pinson, S. R. M. (2000). Mapping of four rice blast resistance genes from ‘Lemont’ and ‘Teqing’ and evaluation of their combinatorial effect for field resistance. Theoretical and Applied Genetics, 101, 1215–1225.CrossRefGoogle Scholar
  74. Tacconi, G., Baldassarre, V., Lanzanova, C., Faivre-Rampant, O., Cavigiolo, S., Urso, S., & Valè, G. (2010). Polymorphism analysis of genomic regions associated with broad-spectrum effective blast resistance genes for marker development in rice. Molecular Breeding, 26(4), 595–617.CrossRefGoogle Scholar
  75. Talbot, N. J. (2003). On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annual Reviews in Microbiology, 57(1), 177–202.CrossRefGoogle Scholar
  76. Tamari, K., & Kaji, J. (1955). Biochemical studies of the blast fungus (Pyricularia oryzae Cavara). Part 2. Studies on the physiological action of pyricularin, a toxin produced by the blast fungus on rice plants. Journal of Agricultural Chemical Society of Japan, 29, 185–190.CrossRefGoogle Scholar
  77. Teng, P. S., Torres, C. Q., Nuque, F. L., & Calvero, S. B. (1990). Current knowledge on crop losses in tropical rice. In Crop loss assessment in rice (pp. 39–54). Los Banos: IRRI.Google Scholar
  78. Thurston, H. D. (1998). Tropical plant diseases. Ithaca: American Phytopathological Society (APS Press).Google Scholar
  79. Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39(1), 385–417.PubMedCrossRefGoogle Scholar
  80. Uesugi, Y. (1978). Resistance of phytopathogenic fungi to fungicides. Japan Pesticide Information, Japan.Google Scholar
  81. Usman, G. M., Wakil, W., Sahi, S. T., & Saleem il, Y. (2009). Influence of various fungicides on the management of rice blast disease. Mycopathology, 7(1), 29–34.Google Scholar
  82. Valent, B., & Chumley, F. G. (1991). Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annual Review of Phytopathology, 29(1), 443–467.PubMedCrossRefGoogle Scholar
  83. van der Heijden, M. G. A., Bakker, R., Verwaal, J., Scheublin, T. R., Rutten, M., Van Logtestijn, R., & Staehelin, C. (2006). Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiology Ecology, 56, 178–118.PubMedCrossRefGoogle Scholar
  84. van der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.PubMedCrossRefGoogle Scholar
  85. Watanabe, K., Tanaka, T., Fukuhara, K., Miyairi, N., Yonehara, H., & Umezawa, H. A. M. A. O. (1957). Blastmycin, a new antibiotic from Streptomyces sp. J. Antibiotics, Ser. A, 10(2), 39–45.Google Scholar
  86. Wilson, R. A., & Talbot, N. J. (2009). Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews. Microbiology, 7, 185–195.PubMedCrossRefGoogle Scholar
  87. Xu, J. R., & Hamer, J. E. (1996). MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes & Development, 10(21), 2696–2706.CrossRefGoogle Scholar
  88. Xu, J. R., Zhao, X., & Dean, R. A. (2007). From genes to genomes: A new paradigm for studying fungal pathogenesis in Magnaporthe oryzae. Advances in Genetics, 57, 175–218.PubMedCrossRefGoogle Scholar
  89. Yang, J. H., Liu, H. X., Zhu, G. M., Pan, Y. L., Xu, L. P., & Guo, J. H. (2008). Diversity analysis of antagonists from rice-associated bacteria and their application in biocontrol of rice diseases. Journal of Applied Microbiology, 104(1), 91–104.Google Scholar
  90. Yoshii, K. (1949). Studies on Cephalothecium as a means of artificial immunization of agricultural crops. Japanese Journal of Phytopathology, 13, 37–40.CrossRefGoogle Scholar
  91. Zeigler, R. S., Leong, S. A., & Teng, P. S. (1994). Rice blast disease. Manila: International Rice Research Institute.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Manish Kumar
    • 1
  • Shabbir Ashraf
    • 1
  1. 1.Department of Plant Protection, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations