Therapeutic Leishmaniasis: Recent Advancement and Developments in Nanomedicines

  • Mallikarjuna Rao Gedda
  • Om Prakash Singh
  • Onkar Nath Srivastava
  • Shyam Sundar


Leishmaniasis is a syndrome caused by the protozoan parasites which is transmitted by the bite of the female sand fly. The disease has three major forms: Cutaneous, Mucocutaneous and most fatal Visceral Leishmaniasis (VL) in affected individuals. Additionally, some of the VL patients (<1%) develop stigmatizing post-kala-azar dermal leishmaniasis (PKDL) characterized by skin lesions in which parasites can be identified, who is otherwise fully recovered from VL. On the Indian Sub-continent, a joint VL elimination initiative has been launched in 2005 by the Governments of India, Bangladesh and Nepal. The main strategy to achieve this is entrusted to the public sector primary health care (PHC) services that should ensure early diagnosis and treatment of the disease. However, the current therapeutic options for treatment remains limited and treatment of patients are complicated due to the paucity of effective drugs or due to the toxicity caused by the available anti-leishmanial drugs used. Other limitations are the duration of treatment and expenditure on hospitalisation. Besides this, drug resistance in clinical settings has further aggravated the problem to the next level. Therefore, there is a need for cost-effective therapeutic alternatives for an excellent leishmanicidal potential that can be conferred to the target cells with no side effects/toxicity to normal cells, higher efficacy and minimal cost. Nanoparticles, due to their outstanding physical and chemical properties, have shown effective environmental, biological and biomedical applications and could be helpful in the detection and elimination of vector-based infectious diseases. In this chapter, we have summarized the current challenges in diagnosis and treatment of leishmaniasis and discussed the wide range of nanomaterials showing promising applications in leishmaniasis.


Nanomedicine Visceral leishmaniasis Diagnosis Drug resistance 





Multidrug resistance protein 1


Multi-drug resistance associated protein ABC transporter




Pentamidine resistance protein 1


World Health Organization



This work was supported by Department of Science & Technology (SR/NM/NS-57/2016), New Delhi (Under nano-mission), and in part by the Extramural Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health (TMRC grant number U19AI074321). The funders had no role in design, decision to publish, or preparation of the report.

Conflict of Interest

The authors declare no conflict of interest.


  1. Akbari, M., Oryan, A., & Hatam, G. (2017). Application of nanotechnology in treatment of leishmaniasis: A review. Acta Tropica, 172, 86–90. Scholar
  2. Akhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., et al. (2017). Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, 57, 1–29.PubMedCrossRefGoogle Scholar
  3. Alam, M. Z., Yasin, G., Kato, H., Sakurai, T., & Katakura, K. (2012). PCR-based detection of Leishmania donovani DNA in a Stray dog from a visceral Leishmaniasis endemic focus in Bangladesh. The Journal of Veterinary Medical Science, 75(1), 75–78. doi: DN/JST.JSTAGE/jvms/12-0134 [pii].PubMedCrossRefGoogle Scholar
  4. Alvar, J., Aparicio, P., Aseffa, A., Den Boer, M., Canavate, C., Dedet, J.-P., et al. (2008). The relationship between leishmaniasis and AIDS: The second 10 years. Clinical Microbiology Reviews, 21(2), 334–359.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvar, J., Velez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., et al. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 7(5), e35671. Scholar
  6. Andreadou, M., Liandris, E., Gazouli, M., Taka, S., Antoniou, M., Theodoropoulos, G., et al. (2014). A novel non-amplification assay for the detection of Leishmania spp. in clinical samples using gold nanoparticles. Journal of Microbiological Methods, 96, 56–61.PubMedCrossRefGoogle Scholar
  7. Andreadou, M., Liandris, E., Gazouli, M., Mataragka, A., Tachtsidis, I., Goutas, N., et al. (2016). Detection of Leishmania-specific DNA and surface antigens using a combination of functionalized magnetic beads and cadmium selenite quantum dots. Journal of Microbiological Methods, 123, 62–67.PubMedCrossRefGoogle Scholar
  8. Anfossi, L., Di Nardo, F., Profiti, M., Nogarol, C., Cavalera, S., Baggiani, C., et al. (2018). A versatile and sensitive lateral flow immunoassay for the rapid diagnosis of visceral leishmaniasis. Analytical and Bioanalytical Chemistry, 410, 1–12.CrossRefGoogle Scholar
  9. Asthana, S., Gupta, P. K., Jaiswal, A. K., Dube, A., & Chourasia, M. K. (2015). Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: In vitro and in vivo studies. Nanomedicine, 10(7), 1093–1109.PubMedCrossRefGoogle Scholar
  10. Blackwell, J. M. (1992). Leishmaniasis epidemiology: All down to the DNA. Parasitology, 104(Suppl), S19–S34.PubMedCrossRefGoogle Scholar
  11. Boelaert, M., El-Safi, S., Hailu, A., Mukhtar, M., Rijal, S., Sundar, S., et al. (2008). Diagnostic tests for kala-azar: A multi-centre study of the freeze-dried DAT, rK39 strip test and KAtex in East Africa and the Indian subcontinent. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(1), 32–40. S0035-9203(07)00287-8 [pii]. Scholar
  12. Boelaert, M., Verdonck, K., Menten, J., Sunyoto, T., Chappuis, F., Rijal, S. (2014). Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. Cochrane Database of Systematic Reviews, (6):CD009135.
  13. Bose, P. P., & Kumar, P. (2016). Visual assessment of parasitic burden in infected macrophage by plasmonic detection of leishmania specific marker RNA. Biochemical and Biophysical Research Communications, 480(1), 81–86.PubMedCrossRefGoogle Scholar
  14. Bose, P. P., Kumar, P., & Munagala, N. (2015). Concurrent visual diagnosis and susceptibility profiling of the first line drug against visceral leishmaniasis by plasmonic detection of PCR amplified genetic biomarker. Acta Tropica, 152, 208–214.PubMedCrossRefGoogle Scholar
  15. Brand, W., Noorlander, C. W., Giannakou, C., De Jong, W. H., Kooi, M. W., Park, M. V., et al. (2017). Nanomedicinal products: A survey on specific toxicity and side effects. International Journal of Nanomedicine, 12, 6107–6129.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bruni, N., Stella, B., Giraudo, L., Della Pepa, C., Gastaldi, D., & Dosio, F. (2017). Nanostructured delivery systems with improved leishmanicidal activity: A critical review. International Journal of Nanomedicine, 12, 5289–5311.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brustoloni, Y. M., Lima, R. B., da Cunha, R. V., Dorval, M. E., Oshiro, E. T., de Oliveira, A. L., et al. (2007). Sensitivity and specificity of polymerase chain reaction in Giemsa-stained slides for diagnosis of visceral leishmaniasis in children. Memórias do Instituto Oswaldo Cruz, 102(4), 497–500. doi: S0074-02762007000400011 [pii].PubMedCrossRefGoogle Scholar
  18. Burza, S., Mahajan, R., Sinha, P. K., van Griensven, J., Pandey, K., Lima, M. A., et al. (2014). Visceral leishmaniasis and HIV co-infection in Bihar, India: Long-term effectiveness and treatment outcomes with liposomal amphotericin B (AmBisome). PLoS Neglected Tropical Diseases, 8(8), e3053.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chakravarty, J., & Sundar, S. (2010). Drug resistance in leishmaniasis. Journal of Global Infectious Diseases, 2(2), 167–176.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chaubey, P., & Mishra, B. (2014). Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydrate Polymers, 101, 1101–1108.PubMedCrossRefGoogle Scholar
  21. Chaubey, P., Mishra, B., Mudavath, S. L., Patel, R. R., Chaurasia, S., Sundar, S., et al. (2018). Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. International Journal of Biological Macromolecules, 111, 109–120.PubMedCrossRefGoogle Scholar
  22. Chaurasia, M., Pawar, V. K., Jaiswal, A. K., Dube, A., & Chourasia, M. K. (2015). Chondroitin nanocapsules enhanced doxorubicin induced apoptosis against leishmaniasis via Th1 immune response. International Journal of Biological Macromolecules, 79, 27–36.PubMedCrossRefGoogle Scholar
  23. Chawla, B., Jhingran, A., Panigrahi, A., Stuart, K. D., & Madhubala, R. (2011). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One, 6(10), e26660. Scholar
  24. Chunge, C., Owate, J., Pamba, H., & Donno, L. (1990). Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Transactions of the Royal Society of Tropical Medicine and Hygiene, 84(2), 221–225.PubMedCrossRefGoogle Scholar
  25. Cortes, S., Rolao, N., Ramada, J., & Campino, L. (2004). PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniasis using Leishmania donovani s.l.-specific kinetoplastid primers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(1), 12–17. doi: S0035920303000026 [pii].PubMedCrossRefGoogle Scholar
  26. Costa Lima, S. A., Resende, M., Silvestre, R., Tavares, J., Ouaissi, A., Lin, P. K. T., et al. (2012). Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: In vitro and in vivo studies. Nanomedicine, 7(12), 1839–1849.PubMedCrossRefGoogle Scholar
  27. Crist, R. M., Grossman, J. H., Patri, A. K., Stern, S. T., Dobrovolskaia, M. A., Adiseshaiah, P. P., et al. (2013). Common pitfalls in nanotechnology: Lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integrative Biology, 5(1), 66–73.PubMedCrossRefGoogle Scholar
  28. Das, V., Ranjan, A., Sinha, A., Verma, N., Lal, C., Gupta, A., et al. (2001). A randomized clinical trial of low dosage combination of pentamidine and allopurinol in the treatment of antimony unresponsive cases of visceral leishmaniasis. The Journal of the Association of Physicians of India, 49, 609–613.PubMedGoogle Scholar
  29. Dedet, J., & Pratlong, F. (2008). Leishmaniasis. In G. C. Cook & A. I. Zumla (Eds.), Manson’s tropical diseases (22nd ed., pp. 1341–1365). London: Saunders.Google Scholar
  30. Diro, E., Techane, Y., Tefera, T., Assefa, Y., Kebede, T., Genetu, A., et al. (2007). Field evaluation of FD-DAT, rK39 dipstick and KATEX (urine latex agglutination) for diagnosis of visceral leishmaniasis in northwest Ethiopia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101(9), 908–914. S0035-9203(07)00143-5 [pii]. Scholar
  31. Dorlo, T. P., Balasegaram, M., Beijnen, J. H., & de Vries, P. J. (2012). Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67(11), 2576–2597.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Dumas, C., Ouellette, M., Tovar, J., Cunningham, M. L., Fairlamb, A. H., Tamar, S., et al. (1997). Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. The EMBO Journal, 16(10), 2590–2598.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Duong, A. D., Sharma, S., Peine, K. J., Gupta, G., Satoskar, A. R., Bachelder, E. M., et al. (2013). Electrospray encapsulation of toll-like receptor agonist resiquimod in polymer microparticles for the treatment of visceral leishmaniasis. Molecular Pharmaceutics, 10(3), 1045–1055.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Ferreira, A., Cemlyn-Jones, J., & Cordeiro, C. R. (2013). Nanoparticles, nanotechnology and pulmonary nanotoxicology. Revista Portuguesa de Pneumologia (English Edition), 19(1), 28–37.CrossRefGoogle Scholar
  35. Freitas-Junior, L. H., Chatelain, E., Kim, H. A., & Siqueira-Neto, J. L. (2012). Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it? International Journal for Parasitology: Drugs and Drug Resistance, 2, 11–19.PubMedPubMedCentralGoogle Scholar
  36. Gannavaram, S., Bhattacharya, P., Ismail, N., Kaul, A., Singh, R., & Nakhasi, H. L. (2016). Modulation of innate immune mechanisms to enhance leishmania vaccine-induced immunity: Role of coinhibitory molecules. Frontiers in Immunology, 7, 187. Scholar
  37. Gutiérrez, V., Seabra, A. B., Reguera, R. M., Khandare, J., & Calderón, M. (2016). New approaches from nanomedicine for treating leishmaniasis. Chemical Society Reviews, 45(1), 152–168.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Haldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: Current status and future directions. Molecular Biology International, 2011, 1–23.CrossRefGoogle Scholar
  39. Hasker, E., Kansal, S., Malaviya, P., Gidwani, K., Picado, A., Singh, R. P., et al. (2013). Latent infection with Leishmania donovani in highly endemic villages in Bihar, India. PLoS Neglected Tropical Diseases, 7(2), e2053. Scholar
  40. Heli, H., Sattarahmady, N., Hatam, G., Reisi, F., & Vais, R. D. (2016). An electrochemical genosensor for Leishmania major detection based on dual effect of immobilization and electrocatalysis of cobalt-zinc ferrite quantum dots. Talanta, 156, 172–179.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hendrickx, S., Boulet, G., Mondelaers, A., Dujardin, J., Rijal, S., Lachaud, L., et al. (2014). Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum. Parasitology Research, 113(5), 1875–1881.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hobson, D. W., Roberts, S. M., Shvedova, A. A., Warheit, D. B., Hinkley, G. K., & Guy, R. C. (2016). Applied nanotoxicology. International Journal of Toxicology, 35(1), 5–16.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Iqbal, H., Ishfaq, M., Wahab, A., Abbas, M. N., Ahmad, I., Rehman, A., et al. (2016). Therapeutic modalities to combat leishmaniasis, a review. Asian Pacific Journal of Tropical Disease, 6(1), 1–5.CrossRefGoogle Scholar
  44. Jacquet, D., Boelaert, M., Seaman, J., Rijal, S., Sundar, S., Menten, J., et al. (2006). Comparative evaluation of freeze-dried and liquid antigens in the direct agglutination test for serodiagnosis of visceral leishmaniasis (ITMA-DAT/VL). Tropical Medicine & International Health, 11(12), 1777–1784. TMI1743 [pii]. Scholar
  45. Jha, P. K., Khan, M. I., Mishra, A., Das, P., & Sinha, K. K. (2017). HAT2 mediates histone H4K4 acetylation and affects micrococcal nuclease sensitivity of chromatin in Leishmania donovani. PLoS One, 12(5), e0177372.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kansal, S., Tandon, R., Verma, P. R. P., Dube, A., & Mishra, P. R. (2012). Development of doxorubicin loaded novel core shell structured nanocapsules for the intervention of visceral leishmaniasis. Journal of Microencapsulation, 30(5), 441–450.CrossRefGoogle Scholar
  47. Khatik, R., Dwivedi, P., Khare, P., Kansal, S., Dube, A., Mishra, P. R., et al. (2014). Development of targeted 1, 2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis. Expert Opinion on Drug Delivery, 11(5), 633–646.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kunjachan, S., Gupta, S., Dwivedi, A. K., Dube, A., & Chourasia, M. K. (2011). Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. Journal of Microencapsulation, 28(4), 301–310.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lamotte, S., Späth, G. F., Rachidi, N., & Prina, E. (2017). The enemy within: Targeting host–parasite interaction for antileishmanial drug discovery. PLoS Neglected Tropical Diseases, 11(6), e0005480.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lima, S. A. C., Silvestre, R., Barros, D., Cunha, J., Baltazar, M. T., Dinis-Oliveira, R. J., et al. (2014). Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine: Nanotechnology, Biology and Medicine, 10(5), e1021–e1030.CrossRefGoogle Scholar
  51. Manandhar, K. D., Yadav, T. P., Prajapati, V. K., Kumar, S., Rai, M., Dube, A., et al. (2008). Antileishmanial activity of nano-amphotericin B deoxycholate. Journal of Antimicrobial Chemotherapy, 62(2), 376–380.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Marinho, F. D. A., Gonçalves, K. C. D. S., Oliveira, S. S. D., Oliveira, A.-C. D. S. C., Bellio, M., d’Avila-Levy, C. M., et al. (2011). Miltefosine induces programmed cell death in Leishmania amazonensis promastigotes. Memórias do Instituto Oswaldo Cruz, 106(4), 507–509.CrossRefGoogle Scholar
  53. Markle, W., & Makhoul, K. (2004). Cutaneous leishmaniasis: Recognition and treatment. American Family Physician, 69(6), 1455–1460.PubMedPubMedCentralGoogle Scholar
  54. Mathis, A., & Deplazes, P. (1995). PCR and in vitro cultivation for detection of Leishmania spp. in diagnostic samples from humans and dogs. Journal of Clinical Microbiology, 33(5), 1145–1149.PubMedPubMedCentralGoogle Scholar
  55. Mauël, J., & Ransijn, A. (1997). Leishmaniaspp.: Mechanisms of toxicity of nitrogen oxidation products. Experimental Parasitology, 87(2), 98–111.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Maurya, R., Singh, R. K., Kumar, B., Salotra, P., Rai, M., & Sundar, S. (2005). Evaluation of PCR for diagnosis of Indian kala-azar and assessment of cure. Journal of Clinical Microbiology, 43(7), 3038–3041. 43/7/3038 [pii]. Scholar
  57. Mishra, J., & Singh, S. (2013). Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Experimental Parasitology, 135(2), 397–406.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mohamed-Ahmed, A. H., Seifert, K., Yardley, V., Burrell-Saward, H., Brocchini, S., & Croft, S. L. (2013). Antileishmanial activity, uptake, and biodistribution of an amphotericin B and poly (α-glutamic acid) complex. Antimicrobial Agents and Chemotherapy, 57(10), 4608–4614.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mohan, S., Srivastava, P., Maheshwari, S., Sundar, S., & Prakash, R. (2011). Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). Analyst, 136(13), 2845–2851.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Moradi, M., Sattarahmady, N., Rahi, A., Hatam, G., Sorkhabadi, S. R., & Heli, H. (2016). A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta, 161, 48–53.PubMedCrossRefGoogle Scholar
  61. Mudavath, S. L., Talat, M., Rai, M., Srivastava, O. N., & Sundar, S. (2014). Characterization and evaluation of amine-modified graphene amphotericin B for the treatment of visceral leishmaniasis: In vivo and in vitro studies. Drug Design, Development and Therapy, 8, 1235–1247.PubMedPubMedCentralGoogle Scholar
  62. Mudavath, S. L., Talat, M., Rai, M., Srivastava, O. N., & Sundar, S. (2016). An oral formulation of amphotericin B for the treatment of visceral Leishmaniasis: f-Gr-AmB. International Journal of Infectious Diseases, 45, 367. Scholar
  63. Mukherjee, A., Padmanabhan, P. K., Sahani, M. H., Barrett, M. P., & Madhubala, R. (2006). Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Molecular and Biochemical Parasitology, 145(1), 1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mukhopadhyay, D., Dalton, J. E., Kaye, P. M., & Chatterjee, M. (2014). Post kala-azar dermal leishmaniasis: An unresolved mystery. Trends in Parasitology, 30(2), 65–74.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nagill, R., & Kaur, S. (2011). Vaccine candidates for leishmaniasis: A review. International Immunopharmacology, 11(10), 1464–1488. Scholar
  66. NIu, M., & Pershin, G. (1966). Comparative study of the chemotherapeutic effect of paromomycin and monomycin in experimental cutaneous leischmaniasis in albino mice. Farmakologiia i Toksikologiia, 29(1), 90–94.Google Scholar
  67. No, J. H. (2016). Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Tropica, 155, 113–123.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ostyn, B., Gidwani, K., Khanal, B., Picado, A., Chappuis, F., Singh, S. P., et al. (2011). Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: A prospective study. PLoS Neglected Tropical Diseases, 5(10), e1284. Scholar
  69. Palumbo, E. (2010). Treatment strategies for mucocutaneous leishmaniasis. Journal of Global Infectious Diseases, 2(2), 147–150.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Paris, C., Loiseau, P. M., Bories, C., & Bréard, J. (2004). Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy, 48(3), 852–859.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pearson, R., & Sousa, A. (1996). Clinical spectrum of leishmaniasis. Clinical Infectious Diseases, 22(1), 1–11.PubMedCrossRefGoogle Scholar
  72. Peine, K. J., Gupta, G., Brackman, D. J., Papenfuss, T. L., Ainslie, K. M., Satoskar, A. R., et al. (2013). Liposomal resiquimod for the treatment of Leishmania donovani infection. Journal of Antimicrobial Chemotherapy, 69(1), 168–175.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Perinoto, A. C., Maki, R. M., Colhone, M. C., Santos, F. R., Migliaccio, V., Daghastanli, K. R., et al. (2010). Biosensors for efficient diagnosis of leishmaniasis: Innovations in bioanalytics for a neglected disease. Analytical Chemistry, 82(23), 9763–9768.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Pham, T., Barratt, G., Michel, J., Loiseau, P., & Saint-Pierre-Chazalet, M. (2013). Interactions of antileishmanial drugs with monolayers of lipids used in the development of amphotericin B–miltefosine-loaded nanocochleates. Colloids and Surfaces B: Biointerfaces, 106, 224–233.PubMedCrossRefGoogle Scholar
  75. Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A., Seaton, A., et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423–428.PubMedCrossRefGoogle Scholar
  76. Prajapati, V. K., Awasthi, K., Gautam, S., Yadav, T. P., Rai, M., Srivastava, O. N., et al. (2011a). Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. Journal of Antimicrobial Chemotherapy, 66(4), 874–879.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Prajapati, V. K., Awasthi, K., Yadav, T. P., Rai, M., Srivastava, O. N., & Sundar, S. (2011b). An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. Journal of Infectious Diseases, 205(2), 333–336.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Rahman, L., Jacobsen, N. R., Aziz, S. A., Wu, D., Williams, A., Yauk, C. L., et al. (2017). Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 823, 28–44.CrossRefGoogle Scholar
  79. Reithinger, R., & Dujardin, J. C. (2007). Molecular diagnosis of leishmaniasis: Current status and future applications. Journal of Clinical Microbiology, 45(1), 21–25. JCM.02029-06 [pii]. Scholar
  80. Reithinger, R., Dujardin, J.-C., Louzir, H., Pirmez, C., Alexander, B., & Brooker, S. (2007). Cutaneous leishmaniasis. The Lancet Infectious Diseases, 7(9), 581–596.PubMedCrossRefGoogle Scholar
  81. Rijal, S., Boelaert, M., Regmi, S., Karki, B. M., Jacquet, D., Singh, R., et al. (2004). Evaluation of a urinary antigen-based latex agglutination test in the diagnosis of kala-azar in eastern Nepal. Tropical Medicine & International Health, 9(6), 724–729.[pii].CrossRefGoogle Scholar
  82. Rodrigues, V., Cordeiro-da-Silva, A., Laforge, M., Silvestre, R., & Estaquier, J. (2016). Regulation of immunity during visceral Leishmania infection. Parasites & Vectors, 9(1), 118.
  83. Sadat, S. M., Jahan, S. T., & Haddadi, A. (2016). Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. Journal of Biomaterials and Nanobiotechnology, 7(02), 91–108.CrossRefGoogle Scholar
  84. Salotra, P., Sreenivas, G., Pogue, G. P., Lee, N., Nakhasi, H. L., Ramesh, V., et al. (2001). Development of a species-specific PCR assay for detection of Leishmania donovani in clinical samples from patients with kala-azar and post-kala-azar dermal leishmaniasis. Journal of Clinical Microbiology, 39(3), 849–854. Scholar
  85. Sarwar, H. S., Akhtar, S., Sohail, M. F., Naveed, Z., Rafay, M., Nadhman, A., et al. (2017). Redox biology of Leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine, 12(14), 1713–1725.PubMedCrossRefGoogle Scholar
  86. Sarwar, H. S., Ashraf, S., Akhtar, S., Sohail, M. F., Hussain, S. Z., Rafay, M., et al. (2018). Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine, 13(1), 25–41.PubMedCrossRefGoogle Scholar
  87. Sattarahmady, N., Movahedpour, A., Heli, H., & Hatam, G. (2016). Gold nanoparticles-based biosensing of Leishmania major kDNA genome: Visual and spectrophotometric detections. Sensors and Actuators B: Chemical, 235, 723–731.CrossRefGoogle Scholar
  88. Savaliya, R., Singh, P., & Singh, S. (2016). Pharmacological drug delivery strategies for improved therapeutic effects: Recent advances. Current Pharmaceutical Design, 22(11), 1506–1520.PubMedCrossRefGoogle Scholar
  89. Schonian, G., Nasereddin, A., Dinse, N., Schweynoch, C., Schallig, H. D., Presber, W., et al. (2003). PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagnostic Microbiology and Infectious Disease, 47(1), 349–358. doi: S0732889303000932 [pii].PubMedCrossRefGoogle Scholar
  90. Shahnaz, G., Edagwa, B. J., McMillan, J., Akhtar, S., Raza, A., Qureshi, N. A., et al. (2017). Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine, 12(2), 99–115.PubMedCrossRefGoogle Scholar
  91. Sharma, S., Zapatero-Rodríguez, J., Estrela, P., & O’Kennedy, R. (2015). Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics. Biosensors, 5(3), 577–601.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Shirkhani, K., Teo, I., Armstrong-James, D., & Shaunak, S. (2015). Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1217–1226.CrossRefGoogle Scholar
  93. Singh, B., & Sundar, S. (2012). Leishmaniasis: Vaccine candidates and perspectives. Vaccine, 30(26), 3834–3842.PubMedCrossRefGoogle Scholar
  94. Singh, O. P., & Sundar, S. (2015). Developments in diagnosis of visceral Leishmaniasis in the elimination era. Journal of Parasitology Research, 2015, 239469. Scholar
  95. Singh, S., Sharma, A., & Robertson, G. P. (2012). Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Research, 72, 5663–5668.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Singh, N., Mishra, B. B., Bajpai, S., Singh, R. K., & Tiwari, V. K. (2014). Natural product based leads to fight against leishmaniasis. Bioorganic & Medicinal Chemistry, 22(1), 18–45. Scholar
  97. Singh, O. P., Hasker, E., Boelaert, M., & Sundar, S. (2016a). Elimination of visceral leishmaniasis on the Indian subcontinent. The Lancet Infectious Diseases, 16(12), e304–e309.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Singh, O. P., Singh, B., Chakravarty, J., & Sundar, S. (2016b). Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infectious Diseases of Poverty, 5, 19. Scholar
  99. Souto, D. E., Fonseca, A. M., Barragan, J. T., de CS Luz, R., Andrade, H. M., Damos, F. S., et al. (2015). SPR analysis of the interaction between a recombinant protein of unknown function in Leishmania infantum immobilised on dendrimers and antibodies of the visceral leishmaniasis: A potential use in immunodiagnosis. Biosensors and Bioelectronics, 70, 275–281.PubMedCrossRefGoogle Scholar
  100. Srivastava, P., Dayama, A., Mehrotra, S., & Sundar, S. (2010). Diagnosis of visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 105(1), 1–6. S0035-9203(10)00219-1 [pii]. Scholar
  101. Srivastava, P., Mehrotra, S., Tiwary, P., Chakravarty, J., & Sundar, S. (2011). Diagnosis of Indian visceral leishmaniasis by nucleic acid detection using PCR. PLoS One, 6(4), e19304. Scholar
  102. Srividya, G., Kulshrestha, A., Singh, R., & Salotra, P. (2011). Diagnosis of visceral leishmaniasis: Developments over the last decade. Parasitology Research, 110(3), 1065–1078. Scholar
  103. Sudarshan, M., Weirather, J. L., Wilson, M. E., & Sundar, S. (2011). Study of parasite kinetics with antileishmanial drugs using real-time quantitative PCR in Indian visceral leishmaniasis. The Journal of Antimicrobial Chemotherapy, 66(8), 1751–1755. doi: dkr185 [pii]. Scholar
  104. Sudarshan, M., Singh, T., Singh, A. K., Chourasia, A., Singh, B., Wilson, M. E., et al. (2014). Quantitative PCR in epidemiology for early detection of visceral leishmaniasis cases in India. PLoS Neglected Tropical Diseases, 8(12), e3366. CrossRefPubMedPubMedCentralGoogle Scholar
  105. Sundar, S., & Rai, M. (2002). Laboratory diagnosis of visceral leishmaniasis. Clinical and Diagnostic Laboratory Immunology, 9(5), 951–958.PubMedPubMedCentralGoogle Scholar
  106. Sundar, S., & Singh, A. (2016). Recent developments and future prospects in the treatment of visceral leishmaniasis. Therapeutic Advances in Infectious Sdisease, 3(3–4), 98–109.CrossRefGoogle Scholar
  107. Sundar, S., Agrawal, S., Pai, K., Chance, M., & Hommel, M. (2005). Detection of leishmanial antigen in the urine of patients with visceral leishmaniasis by a latex agglutination test. The American Journal of Tropical Medicine and Hygiene, 73(2), 269–271. doi: 73/2/269 [pii].PubMedCrossRefGoogle Scholar
  108. Sundar, S., Singh, A., Chakravarty, J., & Rai, M. (2015). Efficacy and safety of miltefosine in treatment of post-kala-azar dermal leishmaniasis. The Scientific World Journal, 2015, 414378. Epub 2015 Jan 1.
  109. Tiwari, N., Gedda, M. R., Tiwari, V. K., Singh, S. P., & Singh, R. K. (2018). Limitations of current therapeutic options, possible drug targets and scope of natural products in control of leishmaniasis. Mini Reviews in Medicinal Chemistry, 18(1), 26–41.PubMedGoogle Scholar
  110. Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: A review. F1000Research, 6, 750. eCollection 2017.
  111. Torres-Sangiao, E., Holban, A. M., & Gestal, M. C. (2016). Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases. Molecules, 21(7), 867.
  112. Toubanaki, D. K., Athanasiou, E., & Karagouni, E. (2016). Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products. Journal of Microbiological Methods, 127, 51–58.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wang, Y., Yu, L., Kong, X., & Sun, L. (2017). Application of nanodiagnostics in point-of-care tests for infectious diseases. International Journal of Nanomedicine, 12, 4789.PubMedPubMedCentralCrossRefGoogle Scholar
  114. WHO (2018). Leishmaniasis, background information. [Online]. Available: Accessed 19/02/2018.
  115. Yasinzai, M., Khan, M., Nadhman, A., & Shahnaz, G. (2013). Drug resistance in leishmaniasis: Current drug-delivery systems and future perspectives. Future Medicinal Chemistry, 5(15), 1877–1888.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mallikarjuna Rao Gedda
    • 1
  • Om Prakash Singh
    • 1
  • Onkar Nath Srivastava
    • 2
  • Shyam Sundar
    • 1
  1. 1.Infectious Diseases Research Laboratory, Department of Medicine, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia

Personalised recommendations