Skip to main content

An Indirect Adaptive Control Paradigm for Wind Generation Systems

  • Chapter
  • First Online:
Advanced Control and Optimization Paradigms for Wind Energy Systems

Part of the book series: Power Systems ((POWSYS))

  • 797 Accesses

Abstract

Globally, there has been a significant evolution in the development of wind energy. Nevertheless, the major difference between the highly stochastic nature of wind speed and the desired demands regarding the electrical energy quality and system stability is the main concern in wind energy system. Hence, wind energy generation according to the standard parameters imposed by the power industry is unachievable without the essential involvement of advanced control technique. In this book chapter, a novel indirect adaptive control for wind energy systems is proposed considering real load demand and weather parameters. The performance of existing neuro-fuzzy scheme is improved further using a Hermite wavelet in the proposed architecture. The parameters of the controller are trained adaptively online via backpropagation algorithm. The proposed control law adopts the free direct control model which shorten the weight of the lengthy pre-learning, and memory requirements for real time application. Various computer simulation results and performance comparison indexes are given to show that the proposed control law is better in terms of efficiency, output power and steady-state performance over the existing state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bradai R, Boukenoui R, Kheldoun A et al (2017) Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions. Appl Energy 199:416–429. https://doi.org/10.1016/J.APENERGY.2017.05.045

    Article  Google Scholar 

  2. Osório GJ, Matias JCO, Catalão JPS (2015) Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75:301–307. https://doi.org/10.1016/J.RENENE.2014.09.058

    Article  Google Scholar 

  3. Amjady N, Keynia F, Zareipour H (2011) Short-term wind power forecasting using ridgelet neural network. Electr Power Syst Res 81:2099–2107. https://doi.org/10.1016/J.EPSR.2011.08.007

    Article  Google Scholar 

  4. Khalid M, Savkin AV (2012) A method for short-term wind power prediction with multiple observation points. IEEE Trans Power Syst 27:579–586. https://doi.org/10.1109/TPWRS.2011.2160295

    Article  Google Scholar 

  5. Xia S, Zhang Q, Hussain ST et al (2018) Impacts of integration of wind farms on power system transient stability. Appl Sci 8. https://doi.org/10.3390/app8081289

    Article  Google Scholar 

  6. Petković D, Ćojbas̆ić Z̆, Nikolić V et al (2014) Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission. Energy 64:868–874. https://doi.org/10.1016/J.ENERGY.2013.10.094

    Article  Google Scholar 

  7. Tan K, Islam S (2004) Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. IEEE Trans Energy Convers 19:392–399. https://doi.org/10.1109/TEC.2004.827038

    Article  Google Scholar 

  8. Boukhezzar B, Siguerdidjane H (2009) Nonlinear control with wind estimation of a DFIG variable speed wind turbine for power capture optimization. Energy Convers Manag 50:885–892. https://doi.org/10.1016/J.ENCONMAN.2009.01.011

    Article  Google Scholar 

  9. Lin C-H, (2014) Recurrent wavelet neural network control of a PMSG system based on a PMSM wind turbine emulator. TURKISH J Electr Eng Comput Sci 22:795–824. https://doi.org/10.3906/elk-1208-3

    Article  Google Scholar 

  10. Yin M, Li W, Chung CY et al (2017) Optimal torque control based on effective tracking range for maximum power point tracking of wind turbines under varying wind conditions. IET Renew Power Gener 11:501–510. https://doi.org/10.1049/iet-rpg.2016.0635

    Article  Google Scholar 

  11. Taveiros FEV, Barros LS, Costa FB (2015) Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines. Energy 89:896–906. https://doi.org/10.1016/J.ENERGY.2015.06.027

    Article  Google Scholar 

  12. Eriksson S, Kjellin J, Bernhoff H (2013) Tip speed ratio control of a 200 kW VAWT with synchronous generator and variable DC voltage. Energy Sci Eng 1:135–143. https://doi.org/10.1002/ese3.23

    Article  Google Scholar 

  13. Zhong Q-H, Ruan Y, Zhao M-H, Tan L (2013) Application of variable-step hill climbing searching in maximum power point tracking for DFIG wind power generation system. Power Syst Prot Control 41:67–73

    Google Scholar 

  14. Lalouni S, Rekioua D, Idjdarene K, Tounzi A (2015) Maximum power point tracking based hybrid hill-climb search method applied to wind energy conversion system. Electr Power Components Syst 43:1028–1038. https://doi.org/10.1080/15325008.2014.999143

    Article  Google Scholar 

  15. Harrag A, Messalti S (2015) Variable step size modified P&O MPPT algorithm using GA-based hybrid offline/online PID controller. Renew Sustain Energy Rev 49:1247–1260. https://doi.org/10.1016/J.RSER.2015.05.003

    Article  Google Scholar 

  16. Jiang L (2015) An improved hybrid hill climb searching control for MPPT of wind power generation systems under fast varying wind speed. IET Conf Proc 1–6. https://doi.org/10.1049/cp.2015.0493

  17. Rezaei MM (2018) A nonlinear maximum power point tracking technique for DFIG-based wind energy conversion systems. Eng Sci Technol an Int J 21:901–908. https://doi.org/10.1016/J.JESTCH.2018.07.005

    Article  Google Scholar 

  18. Li B, Tang W, Xiahou K, Wu Q (2017) Development of novel robust regulator for maximum wind energy extraction based upon perturbation and observation. Energies 10. https://doi.org/10.3390/en10040569

  19. Kazmi SMR, Goto H, Guo H, Ichinokura O (2011) A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems. IEEE Trans Ind Electron 58:29–36. https://doi.org/10.1109/TIE.2010.2044732

    Article  Google Scholar 

  20. Huang C, Li F, Jin Z (2015) Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics. IEEE Trans Ind Electron 62:2530–2539. https://doi.org/10.1109/TIE.2015.2395384

    Article  Google Scholar 

  21. Tang C, Soong WL, Freere P et al (2012) Dynamic wind turbine output power reduction under varying wind speed conditions due to inertia. Wind Energy 16:561–573. https://doi.org/10.1002/we.1507

    Article  Google Scholar 

  22. Kim K, Van TL, Lee D et al (2013) Maximum output power tracking control in variable-speed wind turbine systems considering rotor inertial power. IEEE Trans Ind Electron 60:3207–3217. https://doi.org/10.1109/TIE.2012.2200210

    Article  Google Scholar 

  23. Zhang X, Huang C, Hao S et al (2016) An improved adaptive-torque-gain MPPT control for direct-driven PMSG wind turbines considering wind farm turbulences. Energies 9. https://doi.org/10.3390/en9110977

    Article  Google Scholar 

  24. Johnson KE, Pao LY, Balas MJ, Fingersh LJ (2006) Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Syst Mag 26:70–81. https://doi.org/10.1109/MCS.2006.1636311

    Article  MathSciNet  Google Scholar 

  25. Xia Y, Ahmed KH, Williams BW (2011) A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system. IEEE Trans Power Electron 26:3609–3620. https://doi.org/10.1109/TPEL.2011.2162251

    Article  Google Scholar 

  26. Xia Y, Ahmed KH, Williams BW (2013) Wind turbine power coefficient analysis of a new maximum power point tracking technique. IEEE Trans Ind Electron 60:1122–1132. https://doi.org/10.1109/TIE.2012.2206332

    Article  Google Scholar 

  27. Satpathy AS, Kishore NK, Kastha D, Sahoo NC (2014) Control scheme for a stand-alone wind energy conversion system. IEEE Trans Energy Convers 29:418–425. https://doi.org/10.1109/TEC.2014.2303203

    Article  Google Scholar 

  28. Zhao H, Wu Q, Rasmussen CN, Blanke M (2014) \(L_1\) adaptive speed control of a small wind energy conversion system for maximum power point tracking. IEEE Trans Energy Convers 29:576–584. https://doi.org/10.1109/TEC.2014.2312978

    Article  Google Scholar 

  29. Koutroulis E, Kalaitzakis K (2006) Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Ind Electron 53:486–494. https://doi.org/10.1109/TIE.2006.870658

    Article  Google Scholar 

  30. Heo SY, Kim MK, Choi JW (2015) Hybrid intelligent control method to improve the frequency support capability of wind energy conversion systems. Energies 8:11430–11451. https://doi.org/10.3390/en81011430

    Article  Google Scholar 

  31. Martinez MI, Susperregui A, Tapia G (2017) Second-order sliding-mode-based global control scheme for wind turbine-driven DFIGs subject to unbalanced and distorted grid voltage. IET Electr Power Appl 11:1013–1022. https://doi.org/10.1049/iet-epa.2016.0711

    Article  Google Scholar 

  32. Martinez MI, Susperregui A, Tapia G, Xu L (2013) Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew Power Gener 7:370–379. https://doi.org/10.1049/iet-rpg.2012.0172

    Article  Google Scholar 

  33. Belmokhtar K, Doumbia ML, Agbossou K (2014) Novel fuzzy logic based sensorless maximum power point tracking strategy for wind turbine systems driven DFIG (doubly-fed induction generator). Energy 76:679–693. https://doi.org/10.1016/j.energy.2014.08.066

    Article  Google Scholar 

  34. Hassan SZ, Li H, Kamal T et al (2017) An intelligent pitch angle control of wind turbine. In: 2017 international symposium on recent advances in electrical engineering (RAEE). https://doi.org/10.1109/RAEE.2017.8246144

  35. Pucci M, Cirrincione M (2011) Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Trans Ind Electron 58:37–47. https://doi.org/10.1109/TIE.2010.2043043

    Article  Google Scholar 

  36. Khanali M, Ahmadzadegan S, Omid M et al (2018) Optimizing layout of wind farm turbines using genetic algorithms in Tehran province, Iran. Int J Energy Environ Eng 9:399–411. https://doi.org/10.1007/s40095-018-0280-x

    Article  Google Scholar 

  37. Chang TP (2011) Wind energy assessment incorporating particle swarm optimization method. Energy Convers Manag 52:1630–1637. https://doi.org/10.1016/J.ENCONMAN.2010.10.024

    Article  Google Scholar 

  38. Yang X, Liu G, Li A, Van Dai L (2017) A predictive power control strategy for DFIGs based on a wind energy converter system. Energies 10. https://doi.org/10.3390/en10081098

    Article  Google Scholar 

  39. Medjber A, Guessoum A, Belmili H, Mellit A (2016) New neural network and fuzzy logic controllers to monitor maximum power for wind energy conversion system. Energy 106:137–146. https://doi.org/10.1016/J.ENERGY.2016.03.026

    Article  Google Scholar 

  40. Kamal S, Bandyopadhyay B (2014) Higher order sliding mode control: a control lyapunov function based approach. WSEAS Trans Syst Control 9:38–46

    Google Scholar 

  41. Selvi V, Umarani DR (2010) Comparative analysis of ant colony and particle swarm optimization techniques. Int J Comput Appl 5:4

    Google Scholar 

  42. Vzquez Prez S, Len Galvn JI, Garca Franquelo L et al (2009) Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors. In: International conference on industrial technology, Gippsland, Victoria, Australia. IEEE, pp 1–6

    Google Scholar 

  43. Kamal T, Karabacak M, Hassan SZ et al (2018) A robust online adaptive B-spline MPPT control of three-phase grid-coupled photovoltaic systems under real partial shading condition. IEEE Trans Energy Convers 1. https://doi.org/10.1109/TEC.2018.2878358

  44. Atakulreka A, Sutivong D (2007) Avoiding local minima in feedforward neural networks by simultaneous learning BT. In: Orgun MA, Thornton J (eds) AI 2007: advances in artificial intelligence. Springer, Heidelberg, Berlin, pp 100–109

    Chapter  Google Scholar 

  45. Hassan SZ, Li H, Kamal T et al (2017) Neuro-fuzzy wavelet based adaptive MPPT algorithm for photovoltaic systems. Energies 10:394. https://doi.org/10.3390/en10030394

    Article  Google Scholar 

  46. Abiyev RH, Kaynak O (2008) Identification and control of dynamic plants using fuzzy wavelet neural networks. In: 2008 IEEE international symposium on intelligent control. IEEE. https://doi.org/10.1109/ISIC.2008.4635940

  47. Badar R, Khan L (2013) Hybrid neuro-fuzzy legendre-based adaptive control algorithm for static synchronous series compensator. Electr Power Compon Syst. https://doi.org/10.1080/15325008.2013.792882

    Article  Google Scholar 

  48. Cao C, Ma L, Xu Y (2012) Adaptive control theory and applications. J Control Sci Eng 2012:2

    Article  MathSciNet  Google Scholar 

  49. Tao G (2003) Adaptive control design and analysis. Wiley

    Google Scholar 

  50. Mumtaz S, Khan L, Ahmed S, Bader R (2017) Indirect adaptive soft computing based wavelet-embedded control paradigms for WT/PV/SOFC in a grid/charging station connected hybrid power system. PLoS One 12:e0183750. https://doi.org/10.1371/journal.pone.0183750

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank to Tallinn University of Technology and Archimedes Foundation for providing Dora Plus grant in the frame of the European Regional Development Funds Doctoral Studies and Internationalisation Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamal, T., Karabacak, M., Hassan, S.Z., Fernández Ramírez, L.M., Roasto, I., Khan, L. (2019). An Indirect Adaptive Control Paradigm for Wind Generation Systems. In: Precup, RE., Kamal, T., Zulqadar Hassan, S. (eds) Advanced Control and Optimization Paradigms for Wind Energy Systems. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-5995-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5995-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5994-1

  • Online ISBN: 978-981-13-5995-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics