Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

It is widely known that the purpose of constructing and commissioning municipal wastewater treatment plants (WWTPs) is to reduce the pollution and eutrophication of receiving waters caused by wastewater discharge. The recent rapid growth of the world population and increasingly stringent demand for water quality have become new driving forces in the research and development of new municipal wastewater treatment processes and the upgrade and reconstruction of existing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor—Model development and experimental validation. Water Environment Research, 71(7), 1320–1332.

    Article  CAS  Google Scholar 

  • Barker, P. S., & Dold, P. L. (1997a). General model for biological nutrient removal activated-sludge systems: Model application. Water Environment Research, 69(5), 985–991.

    Article  CAS  Google Scholar 

  • Barker, P. S., & Dold, P. L. (1997b). General model for biological nutrient removal activated-sludge systems: Model presentation. Water Environment Research, 69(5), 969–984.

    Article  CAS  Google Scholar 

  • Costello, D. J., Greenfield, P. F., & Lee, P. L. (1991). Dynamic modeling of a single-stage high-rate anaerobic reactor. 1. Model derivation. Water Research, 25(7), 847–858.

    Google Scholar 

  • Doka, G. (2003) Life cycle inventories of waste treatment services (Ecoinvent Report No. 13). Dubendorf: Swiss Centre for Life Inventories.

    Google Scholar 

  • Dold, P. L., Ekama, G. A., & Marais, G. R. (1980). The activated sludge process. 1. A General Model For The Activated Sludge Process. Progress in Water Technology, 12(6), 47–77.

    Google Scholar 

  • Eldyasti, A., Nakhla, G., & Zhu, J. (2012). Development of a calibration protocol and identification of the most sensitive parameters for the particulate biofilm models used in biological wastewater treatment. Bioresource Technology, 111, 111–121.

    Article  CAS  Google Scholar 

  • Envirosim. (2007) BioWin process simulator. Envirosim Associates Ltd.

    Google Scholar 

  • Foley, J., de Haas, D., Hartley, K., & Lant, P. (2010a). Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44(5), 1654–1666.

    Article  CAS  Google Scholar 

  • Foley, J., de Haas, D., Yuan, Z. G., & Lant, P. (2010b). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research, 44(3), 831–844.

    Article  CAS  Google Scholar 

  • Guinee, J. B. (2002). Handbook on life cycle assessment: Operational guide to the ISO standards. Springer.

    Google Scholar 

  • Hafez, H., Naggar, M. H. E., & Nakhla, G. (2010). Steady-state and dynamic modeling of biohydrogen production in an integrated biohydrogen reactor clarifier system. International Journal of Hydrogen Energy, 35(13), 6634–6645.

    Article  CAS  Google Scholar 

  • Horne, R., Grant, T., & Verghese, K. (2009). Life cycle assessment: principles, practice and prospects. VIC, Australia: CSIRO Publishing.

    Book  Google Scholar 

  • IPCC. (1997) Reference manual: Intergovenmental panel on climate change.

    Google Scholar 

  • IPCC. (2001). Climate change 2001: The scientific basis. Cambridge: Cambridge University Press.

    Google Scholar 

  • IPCC. (2006a). IPCC guidelines for national greenhouse gas inventories. In National greenhouse gas inventories programme.

    Google Scholar 

  • IPCC. (2006b). Wastewater treatment and discharge. H. S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe (Eds.), The national greenhouse gas inventories programme. Japan.

    Google Scholar 

  • Jones, R., Parker, W., Zhu, H., Houweling, D., & Murthy, S. (2009). Predicting the degradability of waste activated sludge. Water Environment Research, 81(8), 765–771.

    Article  CAS  Google Scholar 

  • Kang, X. S., Liu, C. Q., Zhang, B., Bi, X. J., Zhang, F., & Cheng, L. H. (2011). Application of reversed A(2)/O process on removing nitrogen and phosphorus from municipal wastewater in China. Water Science and Technology, 63(10), 2138–2142.

    Article  CAS  Google Scholar 

  • Liu, W. J., Hu, Z. R., Walker, R. L., & Dold, P. L. (2011). Enhanced nutrient removal MBR system with chemical addition for low effluent TP. Water Science and Technology, 64(6), 1298–1306.

    Article  CAS  Google Scholar 

  • Liwarska-Bizukojc, E., & Biernacki, R. (2010). Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresource Technology, 101(19), 7278–7285.

    Article  CAS  Google Scholar 

  • Liwarska-Bizukojc, E., Olejnik, D., Biernacki, R., & Ledakowicz, S. (2011). Calibration of a complex activated sludge model for the full-scale wastewater treatment plant. Bioprocess and Biosystems Engineering, 34(6), 659–670.

    Article  CAS  Google Scholar 

  • Lundie, S., Peters, G. M., & Beavis, P. C. (2004). Life Cycle Assessment for sustainable metropolitan water systems planning. Environmental Science and Technology, 38(13), 3465–3473.

    Article  CAS  Google Scholar 

  • Makinia, J. (2010). Mathematical modelling and computer simulation of activated sludge systems. IWA Publishing.

    Google Scholar 

  • Masse, D. I., & Droste, R. L. (2000). Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Water Research, 34(12), 3087–3106.

    Article  CAS  Google Scholar 

  • McKinney, R. E. (1960). Complete mixing activated sludge. Water and Sewage Works, 107(2), 69.

    Google Scholar 

  • Metcalf, I., & Eddy, H. (2003). Wastewater engineering: Treatment and reuse. New York: McGraw-Hill.

    Google Scholar 

  • Mosey, F. E. (1983). Mathematical-modeling of the anaerobic-digestion process—Regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Science and Technology, 15(8–9), 209–232.

    Article  CAS  Google Scholar 

  • Mulkerrins, D., Jordan, C., McMahon, S., & Colleran, E. (2000). Evaluation of the parameters affecting nitrogen and phosphorus removal in anaerobic/anoxic/oxic (A/A/O) biological nutrient removal systems. Journal of Chemical Technology and Biotechnology, 75(4), 261–268.

    Article  CAS  Google Scholar 

  • Pasztor, I., Thury, P., & Pulai, J. (2009). Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. International Journal of Environmental Science and Technology, 6(1), 51–56.

    Article  CAS  Google Scholar 

  • Shaw, A., Kadava, A., & Tarallo, S. (2011). Refinement of Life Cycle Assessment (LCA) methods for water and wastewater treatment plant design. Amsterdam: IWA publisher.

    Google Scholar 

  • Tillman, A.-M., Svingby, M., & Lundström, H. (1998). Life cycle assessment of municipal waste water systems. International Journal of Life Cycle Assessment, 3(3), 145–157.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, J. X., Ren, N. Q., & Duan, Z. S. (2012). Environmental profile of typical anaerobic/anoxic/oxic wastewater treatment systems meeting increasingly stringent treatment standards from a life cycle perspective. Bioresource Technology, 126, 31–40.

    Article  CAS  Google Scholar 

  • Wang, J. H., Zhang, J., Xie, H. J., Qi, P. Y., Ren, Y. G., & Hu, Z. (2011). Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresource Technology, 102(9), 5479–5485.

    Article  CAS  Google Scholar 

  • Zeng, W., Li, L., Yang, Y. Y., Wang, S. Y., & Peng, Y. Z. (2010). Nitritation and denitritation of domestic wastewater using a continuous anaerobic-anoxic-aerobic (A(2)O) process at ambient temperatures. Bioresource Technology, 101(21), 8074–8082.

    Article  CAS  Google Scholar 

  • Zhou, Z., Wu, Z. C., Wang, Z. W., Tang, S. J., Gu, G. W., Wang, L. C., et al. (2011). Simulation and performance evaluation of the anoxic/anaerobic/aerobic process for biological nutrient removal. Korean Journal of Chemical Engineering, 28(5), 1233–1240.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X. (2020). Life Cycle Inventory Analysis of Typical Wastewater Treatment Chains. In: Energy Consumption, Chemical Use and Carbon Footprints of Wastewater Treatment Alternatives. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-5983-5_3

Download citation

Publish with us

Policies and ethics