Skip to main content

Temperature Fields in Welding with Pressure

  • Chapter
  • First Online:
Thermal Processes in Welding

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 946 Accesses

Abstract

A distinctive feature of pressure welding methods is an additional parameter of welding conditions that is the external mechanical force which is applied to the workpiece during or right after heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullaev, A. A., & Pugin, A. I. (1969). Heating of pipe edges in magnetically impelled arc butt welding. Welding Production, 3, 5–7 (in Russian).

    Google Scholar 

  • Babu, S. S. (2018). Toward process-based quality through a fundamental understanding of weld microstructural evolution. Welding Journal, 97(1), 1-s–18-s.

    Google Scholar 

  • Browne, D. J., Chandler, H. W., Evans, J. T., & Wen, J. (1995). Computer simulation of resistance spot welding in aluminium: Part 1. Welding Journal, 10, 339-s–344-s.

    Google Scholar 

  • Cho, H. S., & Cho, Y. J. (1989). A study of the thermal behaviour in resistance spot welds. Welding Journal, 6, 236-s–244-s.

    Google Scholar 

  • Colegrove, P., Shercliff, H., Robson, J., Kamp, N., Sullivan, A., & Williams, S. (2007). Integrated process modelling of friction stir welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 649–679). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • De, A., & Dorn, L. (2005). Computer simulation of resistance spot welding process. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 895–923). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • De, A. (2011). Modeling of thermal-electrical-mechanical coupling in fusion welding. In T. J. Lienert, S. S. Babu, T. A. Siewert, & V. L. Acoff (Eds.), ASM Handbook. Vol. 06A. Welding fundamentals and processes (pp. 789–796). Materials Park: ASM International.

    Google Scholar 

  • Gagen, Yu. G., & Taran, V. D. (1970). Magnetically impelled arc butt welding (159 pp.). Moscow: Mashinostroenie (in Russian).

    Google Scholar 

  • Greitmann, M. Y., & Rother, K. (1998). Numerical simulation of the resistance spot welding process using SPOTWELDER. In H. Cerjak (Ed.), Mathematical modelling of weld phenomena (Vol. 4, pp. 531–544). London: IOM Communications.

    Google Scholar 

  • Grong, O. (1994). Metallurgical modelling of welding (581 pp.). London: The Institute of Materials.

    Google Scholar 

  • Kalev, L. Ts., Michailov, V. G., & Vylchev, G. P. (1986). Calculation of temperature fields in magnetically impelled arc butt welding with time-varying power. Welding Production, 10, 32–33 (in Russian).

    Google Scholar 

  • Karkhin, V. A., Khomich, P. N., & Ivanov, S. Yu. (2007). Calculation of temperature distribution during flash welding of steel. In Proceedings of 2nd International Conference “Computer Technologies in Joining of Materials-2007” (7 pp.). Tula: Tula State University (in Russian).

    Google Scholar 

  • Karkhin, V. A., Khomich, P. N., Fedotov, B. V., & Rajamaki, P. (2008). Analysis of thermal cycles in resistance flash welding of steels. Welding International, 22(12), 903–908.

    Google Scholar 

  • Karkhin, V. A., Khomich, P. N., & Ivanov, S. Yu. (2009). Calculation of temperature distribution during flash welding. In Proceedings of St. Petersburg State Polytechnic University, No. 510 “Materials and Chemical Technologies” (pp. 193–200). St. Petersburg: St. Petersburg State Polytechnic University Publishing (in Russian).

    Google Scholar 

  • Khan, J. A., Xu, L., & Chao, Y.-J. (1999). Prediction of nugget development during resistance spot welding using coupled thermal-electrical-mechanical model. Science and Technology of Welding and Joining, 4(4), 201–207.

    Google Scholar 

  • Kochergin, K. A. (1987). Resistance welding (240 pp.). Leningrad: Mashinostrenie (in Russian).

    Google Scholar 

  • Kuchuk-Yatsenko, S. I., & Lebedev, V. K. (1976). Flash-butt welding (214 pp.). Kiev: Naukova Dumka (in Russian).

    Google Scholar 

  • Lohwasser, D., & Chen, Z. (Eds.). (2010). Friction stir welding. From basics to applications (424 pp.). Oxford: Woodhead Publishing.

    Google Scholar 

  • Michailov, V. G. (1987). Heat processes in welding with stationary plane heat source of time-varying power. Technicheska Misl, 2, 111–114 (in Bulgarian).

    Google Scholar 

  • Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Reports: A Review. Journal Materials Science and Engineering R, 50, 1–78.

    Google Scholar 

  • Murakawa, H., Kimura, H., & Ueda, Y. (1995). Weld ability analysis of spot welding on aluminum using FEM. Transactions of Japan Welding Research Institute, 24(1), 101–111.

    Google Scholar 

  • Nielsen, C. V., Zhang, W., Alves, L. M., Bay, N., & Martins, P. A. F. (2013). Modeling of thermo-electro-mechanical manufacturing processes. In Applications in metal forming and resistance welding (121 pp.). Springer.

    Google Scholar 

  • Nippes, E. F., Savage, W. F., McCarthy, J. J., & Smith, S. S. (1951). Temperature distribution during the flash welding of steel. Welding Journal, 30(12), 585-s–601-s.

    Google Scholar 

  • Nippes, E. F., Savage, W. F., Smith, S. S., McCarthy, J. J., & Grotke, G. (1953). Temperature distribution during the flash welding of steel—Part II. Welding Journal, 32(3), 113-s–122-s.

    Google Scholar 

  • Nippes, E. F., & Chang, W. H. (1955). The flash welding of commercial molybdenium—Part II. Welding Journal, 34(5), 251-s–261-s.

    Google Scholar 

  • Nippes, E. F., Savage, W. F., Suzuki, H., & Chang, W. H. (1955). A mathematical analysis of the temperature distribution during flash welding. Welding Journal, 34(6), 271-s–285-s.

    Google Scholar 

  • Okamoto, T. (1929). Theoretical and experimental researches on electric resistance welding. Memoirs of the College of Engineering. Kyoto Imperial University, 6(1), 1–111.

    Google Scholar 

  • Pugin, A. I. (1959a). Heating of bars in resistance butt welding. In N. N. Rykalin (Ed.), Thermal processes in resistance welding (pp. 54–133). Moscow: USSR Academy of Sciences Publishing (in Russian).

    Google Scholar 

  • Pugin, A. I. (1959b). Intermittent heating of carbon steel round bars of big diameter in flash butt welding. In N. N. Rykalin (Ed.), Thermal processes in resistance welding (pp. 134–1676). Moscow: USSR Academy of Sciences Publishing (in Russian).

    Google Scholar 

  • Rykalin, N. N. (1959). Theory of heating the rods by current in upset welding. In N. N. Rykalin (Ed.), Thermal processes in resistance welding (pp. 6–53). Moscow: Publication of the USSR Academy of Sciences (in Russian).

    Google Scholar 

  • Schmidt, H. N. B. (2010). Modelling thermal properties in friction stir welding. In D. Lohwasser, & Z. Chen (Eds.), Friction stir welding. From basics to applications (pp. 277–313). Oxford: Woodhead Publishing.

    Google Scholar 

  • Srikunwong, C., Dupuy, T., & Bienvenu Y. (2005). Influence of electrical–thermal physical properties in resistance spot welding modelling. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 999–1022). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

  • Vukicevic, M., Petrovic, Z., Kolarevic, M., & Bjelic, M. (2010). Simulation model of initial period of spot welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 955–966). Graz: Verlag der Technischen Universitaet Graz.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karkhin, V.A. (2019). Temperature Fields in Welding with Pressure. In: Thermal Processes in Welding. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-13-5965-1_6

Download citation

Publish with us

Policies and ethics