Skip to main content

Segmentation and Recognition of E. coli Bacteria Cell in Digital Microscopic Images Based on Enhanced Particle Filtering Framework

  • Conference paper
  • First Online:
Emerging Research in Computing, Information, Communication and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 882))

Abstract

Image processing and pattern recognitions play an important role in biomedical image analysis. Using these techniques, one can aid biomedical experts to identify the microbial particles in electron microscopy images. So far, many algorithms and methods are proposed in the state-of-the-art literature. But still, the exact identification of region of interest in biomedical image is a research topic. In this paper, E. coli bacteria particle segmentation and classification is proposed. For the current research work, the hybrid algorithm is developed based on sequential importance sampling (SIS) framework, particle filtering, and Chan–Vese level set method. The proposed research work produces 95.50% of average classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic Active Contours. International Journal of Computer Vision, 22(1), 61–79.

    Article  Google Scholar 

  2. Mumford, D. (1989). Optimal approximation by piecewise smooth functions and associated variational problems. Communications on Pure Applied Mathematics, 42(5), 577–685.

    Article  MathSciNet  Google Scholar 

  3. Chan, T., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277. https://doi.org/10.1109/83.902291.

    Article  MATH  Google Scholar 

  4. Tsai, A., Yezzi, A., & Willsky, A. S. (2001). Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on Image Processing, 10(8), 1169–1186. https://doi.org/10.1109/83.935033.

    Article  MATH  Google Scholar 

  5. Cremers, D., & Soatto, S. (2004). Motion competition: A variational approach to piecewise parametric motion segmentation. International Journal of Computer Vision, 62(3), 249–265.

    Article  Google Scholar 

  6. Goldenberg, R., Kimmel, R., Rivlin, E., & Rudzsky, M. (2001). Fast geodesic active contours. IEEE Transactions on Image Processing, 10(10), 1467–1475. https://doi.org/10.1109/83.951533.

    Article  MathSciNet  Google Scholar 

  7. Niethammer, M., & Tannenbaum, A. (2004). Dynamic geodesic snakes for visual tracking. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004 (Vol. 1, pp. 660–667). https://doi.org/10.1109/cvpr.2004.1315095.

  8. Paragios, N., & Deriche, R. (2002). Geodesic active regions: A new framework to deal with frame partition problems in computer vision. Journal of Visual Communication and Image Representation, 13(12), 249–268. https://doi.org/10.1006/jvci.2001.0475.

    Article  Google Scholar 

  9. Avenel, C., Mémin, E., & Pérez, P. (2009). Tracking closed curves with non-linear stochastic filters. In X.-C. Tai, K. Mrken, M. Lysaker, & K.-A. Lie (Eds.), Scale space and variational methods in computer vision, no. 5567 in Lecture Notes in Computer Science (pp. 576–587). Berlin: Springer.

    Google Scholar 

  10. Lesage, D., Angelini, E. D., Bloch, I., & Funka-Lea, G. (2009). A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis, 13(6), 819–845. https://doi.org/10.1016/j.media.2009.07.011.

    Article  Google Scholar 

  11. Image courtesy: from http://en.wikipedia.org/wiki/Image:EscherichiaColi_NIAID.jpgEscherichia coli: Scanning electron micrograph of Escherichia coli, grown in culture and adhered to a cover slip. Credit: Rocky Mountain Laboratories, NIAID.

  12. Blake, A., Curwen, R., & Zisserman, A. (1993). A framework for spatiotemporal control in the tracking of visual contours. International Journal of Computer Vision, 11(2), 127–145.

    Article  Google Scholar 

  13. Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 10(3), 197–208.

    Article  Google Scholar 

  14. Isard, M., & Blake, A. (1998). CONDENSATION–Conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1), 5–28.

    Article  Google Scholar 

  15. Yilmaz, A., Li, X., & Shah, M. (2004). Contour-based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11), 1531–1536. https://doi.org/10.1109/TPAMI.2004.96.

    Article  Google Scholar 

  16. Shao, J., Porikli, F., & Chellappa, R. (2007). Estimation of contour motion and deformation for nonrigid object tracking. JOSA A, 24(8), 2109–2121.

    Article  Google Scholar 

  17. Pham, D. L., Xu, C., & Prince, J. L. (2000). A survey of current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315–338.

    Article  Google Scholar 

  18. Zaitoun, N. M., & Aqel, M. J. (2015). Survey on image segmentation techniques. Procedia Computer Science, 65, 797–806.

    Article  Google Scholar 

  19. Iglesias, J. E., & Sabuncu, M. R. (2015, August). Multi-atlas segmentation of biomedical images: A survey. Medical Image Analysis, 24(1), 205–219.

    Google Scholar 

  20. Hamuda, E., Glavin, M., & Jones, E. (2016, July). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125, 184–199.

    Google Scholar 

  21. Khairuzzaman, A. K. M., & Chaudhury, S. (2017). Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Systems with Applications, 86(15), 64–76.

    Article  Google Scholar 

  22. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A. (2017, December). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.

    Article  Google Scholar 

  23. Mesejo, P., Ibáñez, Ó., Cordón, Ó., Cagnoni, S. (2016, July). A survey on image segmentation using metaheuristic-based deformable models: State of the art and critical analysis. Applied Soft Computing, 44, 1–29.

    Article  Google Scholar 

  24. Sridevi, M., & Mala, C. (2012). A survey on monochrome image segmentation methods. Procedia Technology, 6, 548–555.

    Article  Google Scholar 

  25. Comaniciu, D., Ramesh, V., Meer, P. (2000). Real-time tracking of non-rigid objects using mean shift. In IEEE Conference on Computer Vision and Pattern Recognition, 2000. Proceedings (Vol. 2, pp. 142–149). IEEE.

    Google Scholar 

  26. Sethian, J. A. (1999). Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science (Vol. 3). Cambridge University Press.

    Google Scholar 

  27. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  28. https://www.cliffsnotes.com/study-guides/biology/microbiology/microscopy/staining-techniques.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjunatha Hiremath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hiremath, M. (2019). Segmentation and Recognition of E. coli Bacteria Cell in Digital Microscopic Images Based on Enhanced Particle Filtering Framework. In: Shetty, N., Patnaik, L., Nagaraj, H., Hamsavath, P., Nalini, N. (eds) Emerging Research in Computing, Information, Communication and Applications. Advances in Intelligent Systems and Computing, vol 882. Springer, Singapore. https://doi.org/10.1007/978-981-13-5953-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5953-8_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5952-1

  • Online ISBN: 978-981-13-5953-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics