Shasidhar, M., Raja, V. S. and Kumar, B. V., (June 2011). MRI brain image segmentation using modified fuzzy c-means clustering algorithm. In 2011 International Conference on Communication Systems and Network Technologies (CSNT) (pp. 473–478).
Google Scholar
Despotović, I., Goossens, B., Philips, W. (2015) MRI segmentation of the human brain: challenges, methods, and applications. Computational and mathematical methods in medicine, 2015.
CrossRef
Google Scholar
Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, 31(8), 1426–1438.
CrossRef
Google Scholar
Suhag, S., & Saini, L. M. (May 2015). Automatic detection of brain tumor by image processing in matlab. In SARC-IRF International Conference.
Google Scholar
Hassan, E., & Aboshgifa, A. (2015). Detecting brain tumour from MRI image using matlab gui programme. International Journal of Computer Science & Engineering Survey (IJCSES) 6(6).
Google Scholar
Sharma, N., & Aggarwal, L. M. (2010). Automated medical image segmentation techniques. Journal of medical physics/Association of Medical Physicists of India, 35(1), 3.
Google Scholar
Tsai, C., Manjunath, B. S., & Jagadeesan, B. (1995). Automated segmentation of brain MR images. Pattern Recognition, 28(12), 1825–1837.
CrossRef
Google Scholar
Despotović, I., Goossens, B., & Philips, W. (2015). MRI segmentation of the human brain: challenges, methods, and applications. Computational and mathematical methods in medicine, 2015.
Google Scholar
Chuang, K. S., Tzeng, H. L., Chen, S., Wu, J., & Chen, T. J. (2006). Fuzzy c-means clustering with spatial information for image segmentation. Computerized medical imaging and graphics, 30(1), pp. 9–15.
Google Scholar
Mokbel, H. A., Morsy, M. E. S., & Abou-Chadi, F. E. Z. (2000). Automatic segmentation and labeling of human brain tissue from MR images. In 17th NRSC’2000. Seventeenth National Radio Science Conference, 2000 (pp. K2–1). IEEE.
Google Scholar
Antolovic, D., (2008). Review of the Hough transform method, with an implementation of the fast Hough variant for line detection. Department of Computer Science, Indiana University.
Google Scholar
Kumar, N., & Nachamai, M. Noise Removal and filtering techniques used in medical images. Oriental Journal of Computer Science and Tachnology 10(1).
Google Scholar
Wang, H. R., Yang, J. L., Sun, H. J., Chen, D., & Liu, X. L. (August 2011). An improved region growing method for medical image selection and evaluation based on Canny edge detection. In 2011 International Conference on Management and Service Science (MASS) (pp. 1–4). IEEE.
Google Scholar
Mubarak, D. M. N., Sathik, M. M., Beevi, S. Z., & Revathy, K. (2012). A hybrid region growing algorithm for medical image segmentation. International Journal of Computer Science & Information Technology, 4(3), 61.
CrossRef
Google Scholar
Wong, K. K., Tu, J., Kelso, R. M., Worthley, S. G., Sanders, P., Mazumdar, J., et al. (2010). Cardiac flow component analysis. Medical Engineering & Physics, 32(2), 174–188.
CrossRef
Google Scholar
Zanaty, E. A. (2013). An Approach based on fusion concepts for improving brain magnetic resonance images (MRIs) segmentation. Journal of Medical Imaging and Health Informatics, 3(1), 30–37.
CrossRef
Google Scholar
Zanaty, E. A., & Ghiduk, A. S. (2013). A novel approach for medical image segmentation based on genetic and seed region growing algorithms. Journal of Computer Science and Information Systems ComSIS, 10(3), 1319–1342.
CrossRef
Google Scholar
Zanaty, E. A., & Afifi, A. (2013). A watershed approach for improving medical image segmentation. Computer methods in biomechanics and biomedical engineering, 16(12), 1262–1272.
CrossRef
Google Scholar
Zanaty, E. A. (2013). An adaptive fuzzy C-means algorithm for improving MRI segmentation. Open Journal of Medical Imaging, 3(04), 125.
CrossRef
Google Scholar
[Online] Available: https://en.wikipedia.org/wiki/Connected-component_labeling [Accessed November 9, 2017].
Wu, K., Otoo, E., & Shoshani, A. (2005). Optimizing connected component labeling algorithms. Lawrence Berkeley National Laboratory.
Google Scholar
Suzuki, K., Horiba, I., & Sugie, N. (2003). Linear-time connected-component labeling based on sequential local operations. Computer Vision and Image Understanding, 89(1), 1–23.
CrossRef
Google Scholar
Goyal, A., Lee, J., Lamata, P., van den Wijngaard, J., van Horssen, P., Spaan, J., et al. (2013). Model-based vasculature extraction from optical fluorescence cryomicrotome images. IEEE Transactions on Medical Imaging, 32(1), 56–72.
CrossRef
Google Scholar
Sikarwar, B. S., Roy, M. K., Ranjan, P., & Goyal, A. (2016). Automatic Disease Screening Method Using Image Processing for Dried Blood Microfluidic Drop Stain Pattern Recognition. Journal of Medical Engineering & Technology, 40(5), 245–254.
CrossRef
Google Scholar
Sikarwar, B. S., Roy, M. K., Ranjan, P., & Goyal, A. (2016). Imaging-based method for precursors of impending disease from blood traces. In Advances in Intelligent Systems and Computing (Vol. 468, pp. 411–424). Springer.
Google Scholar
Sikarwar, B. S., Roy, M. K., Ranjan, P., & Goyal, A. (2015). Automatic pattern recognition for detection of disease from blood drop stain obtained with microfluidic device. In Advances in Intelligent Systems and Computing (Vol. 425, pp. 655–667). Springer.
Google Scholar
Bhan, A., Bathla, D., & Goyal, A. (2016). Patient-specific cardiac computational modeling based on left ventricle segmentation from magnetic resonance images. Advances in Intelligent Systems and Computing (Vol. 469, pp. 179–187). Springer.
Google Scholar
Ray, V., & Goyal, A. (2015) Automatic left ventricle segmentation in cardiac MRI images using a membership clustering and heuristic region-based pixel classification approach. In Advances in Intelligent Systems and Computing (Vol. 425, pp. 615–623). Springer.
Google Scholar
Chhabra, M., & Goyal, A. (2017) Accurate and robust iris recognition using modified classical hough transform. In Lecture Notes in Networks and Systems (Vol. 10, pp. 493–507). Springer.
Google Scholar
Goyal, A., & Ray, V. (2015). Belongingness clustering and region labeling based pixel classification for automatic left ventricle segmentation in cardiac MRI images. Translational Biomedicine, 6(3).
Google Scholar
Goyal, A., Roy, M., Gupta, P., Dutta, M. K., Singh, S., & Garg, V. (2015) Automatic detection of mycobacterium tuberculosis in stained sputum and urine smear images. Archives of Clinical Microbiology, 6(3).
Google Scholar
Bhan, A., Goyal, A., Chauhan, N., & Wang, C.W. (2016) Feature line profile based automatic detection of dental caries in bitewing radiography. In: International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), pp. 635–640, IEEE.
Google Scholar
Bhan, A., Goyal, A., Dutta, M. K., Riha, K., Omran, Y. Image-Based Pixel Clustering and Connected Component Labeling in Left Ventricle Segmentation of Cardiac MR Images. In 7th International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 339–342, IEEE, 2015.
Google Scholar
Ray, V., & Goyal, A. (2015). Image-Based fuzzy c-means clustering and connected component labeling subsecond fast fully automatic complete cardiac cycle left ventricle segmentation in multi frame cardiac MRI images. In International Conference on Systems in Medicine and Biology (ICSMB), IEEE.
Google Scholar
Goyal, A., van den Wijngaard, J., van Horssen, P., Grau, V., Spaan, J., & Smith, N. (2009). Intramural spatial variation of optical tissue properties measured with fluorescence microsphere images of porcine cardiac tissue. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1408–1411.
Google Scholar
Sharma, P., Sharma, S., Goyal, A. (2016) An MSE (mean square error) based analysis of deconvolution techniques used for deblurring/restoration of MRI and CT Images. In 2nd International Conference on Information and Communication Technology for Competitive Strategies (ICTCS-2016), March 04–05, 2016, Udaipur, India, Conference Proceedings by ACM—ICPS Proceedings Vol. ISBN 978-1-4503-3962-9/16/03, http://dx.doi.org/10.1145/2905055.2905257.
Goyal, A., Bathla, D., Sharma, P., Sahay, M., & Sood, S. (2016). MRI image based patient specific computational model reconstruction of the left ventricle cavity and myocardium. In 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 1065–1068, IEEE.
Google Scholar
Duta, M., Thiyagalingam, J., Trefethen, A., Goyal, A., Grau, V., & Smith, N. (2010) Parallel simulation for parameter estimation of optical tissue properties. In Euro-Par 2010-Parallel Processing (pp. 51–62).
Google Scholar
Atkins, M. S., & Mackiewich, B. T. (1998). Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1), 98–107.
CrossRef
Google Scholar
Wagner, M., Yang, P., Schafer, S., Strother, C., & Mistretta, C. (2015). Noise reduction for curve-linear structures in real time fluoroscopy applications using directional binary masks. Medical Physics, 42(8), 4645–4653.
CrossRef
Google Scholar
Meijs, M., Patel, A., Leemput, S. C., Prokop, M., Dijk, E. J., Leeuw, F. E., et al. (2017). Robust segmentation of the full cerebral vasculature in 4D CT of suspected stroke patients. Scientific reports, 7(1), 15622.
CrossRef
Google Scholar
Bhan, A., Goyal, A., & Ray, V. (2015) Fast fully automatic multiframe segmentation of left ventricle in cardiac mri images using local adaptive k-means clustering and connected component labeling. In 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 114–119, IEEE.
Google Scholar