The Mechanical Property and Crystalline Structure of Novel High-Strength Polyamide Fibers

  • Weinan Pan
  • Jiaguang Sheng
  • Hengxue XiangEmail author
  • Linggen Kong
  • Gongxun Zhai
  • Chi Ma
  • Mingda Ni
  • Meifang ZhuEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 216)


A kind of novel high-strength copolyamide 6/66 fibers prepared by an effective and simple approach is reported in this paper. Firstly, PA6/66 copolyamide was obtained by polymerization of caprolactam and nylon 66 salt, and then PA6/66 fibers were prepared after melt-spinning and drawing process. The effects of draft ratio and drawing temperature on the mechanical property and crystalline structure of PA6/66 fibers were investigated. The results revealed that a complete disappearance of γ crystal occurred in PA6/66 fibers after drawing. When the draft ratio was 4.0, the breaking strength of PA6/66 fibers was 4.57 cN/dtex, which was easy to reach the standard of polyamide fiber superior product (4.0 cN/dtex). Furthermore, the highest breaking strength of PA6/66 fibers could be achieved (5.12 cN/dtex) when the draft ratio was 4.5. As the draft ratio increased, the crystallinity of PA6/66 fiber also increased from 44.5 to 64.4%, while the degree of orientation increased firstly and then decreased. On the other hand, the lower drawing temperature (below glass transition temperature (Tg)) favored the orientation of the PA6/66 fibers. When the drawing temperature increased, the crystallinity of the fibers appeared at a maximum temperature of 40 °C.



The authors gratefully acknowledge the support from the Fundamental Research Funds for the Central Universities (2232018A3-01,2232018D3-03), the National Natural Science Foundation of China (51733002, 51603033), the Science and Technology Commission of Shanghai Municipality (16JC1400700), and the Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-03-E00055).


  1. 1.
    Z.L. Wang, J.F. Li, J. Nie, S.G. Yang, Effect of hydrothermal treatment on structure and properties of polyamide 6 fibers. Acta Polymerica Sinica 2016(12), 1710–1716 (2016)Google Scholar
  2. 2.
    Y.F. Men, J. Rieger, Temperature dependent wide angle X-ray diffraction studies on the crystalline transition in water saturated and dry polyamide 6/66 copolymer. Eur. Polym. J. 40(11), 2629–2635 (2004)CrossRefGoogle Scholar
  3. 3.
    Y. Liu, L. Cui, F.X. Guan, Y. Gao, N.E. Hedin, L. Zhu, H. Fong, Crystalline morphology and polymorphic phase transitions in Electrospun Nylon-6 nanofibers. Macromolecules 40(17), 6283–6290 (2007)CrossRefGoogle Scholar
  4. 4.
    J.R. Xu, X.K. Ren, T. Yang, X.Q. Jiang, W.Y. Chang, S. Yang, A. Stroeks, E.Q. Chen, Revisiting the thermal transition of β-form Polyamide-6: evolution of structure and morphology in uniaxially stretched films. Macromolecules 51(1), 137–150 (2018)CrossRefGoogle Scholar
  5. 5.
    Y.S. Huang, F. Jiang, L.I. Jie, S.M. Peng, X. Ren, Y.H. Luo, C.W. Yi, Controllable formation of the α and γ crystalline phases of Nylon-6. J. Nat. Sci. Hunan Norm. Univ. 39(1), 35–42 (2016)Google Scholar
  6. 6.
    M. Wei, W. Davis, B. Urban, Y.Q. Song, F.E. Porbeni, X.W. Wang, J.L. White, M.C. Balik, C.C. Rusa, J. Fox, A.E. Tonelli, Manipulation of Nylon-6 crystal structures with its α-cyclodextrin inclusion complex. Macromolecules 35(21), 8039–8044 (2002)CrossRefGoogle Scholar
  7. 7.
    C. Li, J.T. Yeh, Nylon 6 crystal-phase transition in nylon 6/clay/poly(vinyl alcohol) nanocomposites. J. Appl. Polym. Sci. 118(3), 1683–1690 (2010)Google Scholar
  8. 8.
    C. Wang, S.Y. Tsou, H.S. Lin, Brill transition of nylon-6 in electrospun nanofibers. Colloid Polym. Sci. 290(17), 1799–1809 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, S. Liu, A. Huang, Y. Zhang, Z. Chi, J.R. Xu, Influence of thermal treatment on crystal melting behavior and crystal structure of nylon 6 and polyamide block copolymer/nylon 6 blends. Acta Polymerica Sinica 010(2), 231–236 (2010)CrossRefGoogle Scholar
  10. 10.
    C.F. Zhang, Y.H. Liu, S.X. Liu, H.Z. Li, K. Huang, Q.H. Pan, X.H. Hua, C.W. Hao, Q.F. Ma, C.Y. Lv, W.H. Li, Z.L. Yang, Y. Zhao, D.J. Wang, G.Q. Lai, J.X. Jiang, Y.Z. Xu, J.G. Wu, Crystalline behaviors and phase transition during the manufacture of fine denier pa6 fibers. Sci. China Chem. 52(11), 1835 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Keizo, I. Kinzo, Effects of temperature and water on the γ → α crystalline transition of nylon 6 caused by stretching in the chain direction. J. Polym. Sci. Part A-2 Polym. Phys. 6(7), 1317–1329 (1968)Google Scholar
  12. 12.
    H. Haberkorn, K. Hahn, H. Breuer, H.D. Dorrer, P. Matthies, On the neck-like deformation in high-speed spun polyamides. J. Appl. Polym. Sci. 47(9), 1551–1579 (2010)CrossRefGoogle Scholar
  13. 13.
    C.R. And, E.B. Gowd, High-temperature X-ray diffraction studies on the crystalline transitions in the α- and γ-forms of Nylon-6. Macromolecules 34(10), 3308–3313 (2001)CrossRefGoogle Scholar
  14. 14.
    N. Vasanthan, D.R. Salem, FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J. Polym. Sci., Part B: Polym. Phys. 39(5), 536–547 (2015)CrossRefGoogle Scholar
  15. 15.
    H.L. Guo, J.Y. Wang, C.B. Zhou, W.Y. Zhang, Z.X. Wang, B.H. Xu, J.Q. Li, Y.R. Shang, J.D.C. Christiansen, D.H. Yu, Z.H. Wu, S.C. Jiang, Direct investigations of deformation and yield induced structure transitions in polyamide 6 below glass transition temperature with WAXS and SAXS. Polymer 70(9), 109–117 (2015)Google Scholar
  16. 16.
    Z.H. Peng, Z.P. Shi, Handbook of Plastic Industry. Chemical Industry Press (2001)Google Scholar
  17. 17.
    Y.K. Liu, J. Liu, J. Jin, Z.C. Que, Effect of tensile heat setting on structure and properties of PET-PA/PA6 blend fibers. China Synth. Fiber Ind. 38(3), 9–12 (2015)Google Scholar
  18. 18.
    H.Z. Li, Y.J. Wu, H. Sato, L. Kong, C.F. Zhang, K. Huang, D.L. Tao, J. Chen, X.X. Liu, Y. Zhao, Y.Z. Xu, J.G. Wu, Y. Qzaki, A new facile method for preparation of Nylon-6 with high crystallinity and special morphology. Macromolecules 42(4), 1175–1179 (2009)CrossRefGoogle Scholar
  19. 19.
    Z.Y. Jia, Z.Q. Cai, J.W. Chen, L. Zhang, F. Yang, X.L. Que, H.F. Bao, High efficiency toughness of aromatic sulfonamide in polyamide 6. J. Appl. Polym. Sci. 135(30), 46527 (2018)CrossRefGoogle Scholar
  20. 20.
    H.X. Xiang, L.L. Li, W. Chen, S.L. Yu, B. Sun, M.F. Zhu, Flame retardancy of polyamide 6 hybrid fibers: combined effects of αzirconium phosphate and ammonium sulfamate. Progr. Nat. Sci. Mat. Int. 27(3), 369–373 (2017)CrossRefGoogle Scholar
  21. 21.
    Z.Y. Chen, H.X. Xiang, Z.X. Hu, Z.G. Ni, M.F. Zhu, Enhanced mechanical properties of melt-spun bio-based PHBV fibers: effect of heterogeneous nucleation and drawing process. Acta Polymerica Sinica 2017(7), 1121–1129 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Weinan Pan
    • 1
  • Jiaguang Sheng
    • 2
  • Hengxue Xiang
    • 1
    Email author
  • Linggen Kong
    • 2
  • Gongxun Zhai
    • 1
  • Chi Ma
    • 2
  • Mingda Ni
    • 1
  • Meifang Zhu
    • 1
    Email author
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.Jiangsu Haiyang Chemical Fiber Co., Ltd.TaizhouChina

Personalised recommendations