Skip to main content

A Study on the Radial Difference of PLA Monofilament

  • Conference paper
  • First Online:
Physics and Techniques of Ceramic and Polymeric Materials (CMC 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 216))

Included in the following conference series:

  • 541 Accesses

Abstract

PLA monofilament has great potential for resorbable applications. In this paper, a series of PLA monofilaments with different drawing temperature and drawing ratio were prepared through melt spinning. The crystallization and radial difference of the cross section were carefully studied by DSC and Raman spectra, respectively. The results showed that the crystallinity increased with the increasing cooling time in the cooling process and increased with the decreasing drawing temperature or the increasing drawing ratio in the drawing process. The crystallinity of the core was higher than that of the surface. The molecular orientation of the core decreased with the increasing cooling time and increased with the increasing drawing temperature and the decreasing draw ratio, while there’s no significant tendency for the molecular orientation of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.K. Kulkarni, K.C. Pani, C. Neuman, F. Leonard, Polylactic acid for surgical implants. Arch. Surg. 93, 839–843 (1966)

    Article  CAS  Google Scholar 

  2. N. Ashammakhi, P. Rokkanen, Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18, 3–9 (1997)

    Article  CAS  Google Scholar 

  3. I. Bisson, M. Kosinski, S. Ruault, B. Gupta, J. Hilborn, F. Wurm, P. Frey, Acrylic acid grafting and collagen immobilization on poly (ethylene terephthalate) surfaces for adherence and growth of human bladder smooth muscle cells. Biomaterials 23, 3149–3158 (2002)

    Article  CAS  Google Scholar 

  4. Y. Wang, X. Zhang, Vascular restoration therapy and bioresorbable vascular scaffold. Regenerative Biomater. 1(1), 49–55 (2014)

    Article  Google Scholar 

  5. Y. Onuma, P.W. Serruys, Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization. Circulation 123(7), 79–97 (2011)

    Article  Google Scholar 

  6. Y. Wang, L. Kleiner, Fabricating an implantable medical device from an amorphous or very low crystallinity polymer construct. US: 8372332 (2013)

    Google Scholar 

  7. Y. Wang, Bioabsorbable stent with layers having different degradation rates. US: 8057876 (2011)

    Google Scholar 

  8. Y. Wang, D. Gale, B. Huang, Implantable medical devices fabricated from polymer blends with star-block copolymers. US: 8262723 (2012)

    Google Scholar 

  9. Y. Wang, D. Castrol, S. Pacetti, Methods to improve adhesion of polymer coatings over stents. US: 7998524 (2011)

    Google Scholar 

  10. W. Channuan, J. Siripitayananon, R. Molloy, G.R. Mitchell, Defining the physical structure and properties in novel monofilaments with potential for use as absorbable surgical sutures based on a lactide containing block terpolymer. Polymer 49(20), 4433–4445 (2008)

    Article  CAS  Google Scholar 

  11. S.H. Im, C.Y. Kim, Y. Jung, Y. Jang, S.H. Kim, Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Biomater. Sci. 5(3), 422–431 (2017)

    Article  CAS  Google Scholar 

  12. C. Wang, P. Zhang, X. Jiang, Design and characterization of PLLA stents with Z-structure. Text. Res. J. 86(16), 1701–1709 (2016)

    Article  CAS  Google Scholar 

  13. E. Tenekecioglu, P.W. Serruys, Y. Onuma, R. Costa, D. Chamie, Y. Sotomi, T.B. Yu, A. Abizaid, H.B. Liew, T. Santoso, Randomized comparison of absorb bioresorbable vascular scaffold and mirage microfiber sirolimus-eluting scaffold using multimodality imaging. Jacc-Cardiovasc. Interv. 10(11), 1115–1130 (2017)

    Article  Google Scholar 

  14. R. Yuval, H.Z. Moran, J.D. Abraham, N. Abraham, Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 107, 153–162 (2016)

    Article  Google Scholar 

  15. B. Gupta, N. Revagade, J. Hilborn, Poly (lactic acid) fiber: an overview. Prog. Polym. Sci. 32(4), 455–482 (2007)

    Article  CAS  Google Scholar 

  16. R.S. David, Structure formation in polymeric fibers (Hanser Publishers, Cincinnati, 2000)

    Google Scholar 

  17. H. Ma, Study on the formation machanism and the structure and properties of large-diameter polymer monofilaments. Donghua University (2011)

    Google Scholar 

  18. B. Na, N. Tian, R. Lv, S. Zou, W. Xu, Q. Fu, Annealing-induced oriented crystallization and its influence on the mechanical responses in the melt-spun monofilament of Poly(l-lactide). Macromolecules 43(2), 1156–1158 (2010)

    Article  CAS  Google Scholar 

  19. S. Ruengdechawiwat, J. Siripitayananon, R. Molloy, R. Somsunan, P.D. Topham, B.J. Tighe, Preparation of a poly(L-lactide-co-caprolactone) copolymer using a novel tin(II) alkoxide initiator and its fiber processing for potential use as an absorbable monofilament surgical suture. International Journal of Polymeric Materials and Polymeric Biomaterials 65(6), 277–284 (2016)

    Article  Google Scholar 

  20. T.H. Oh, Numerical simulation of temperature distribution in melt spinning of PET monofilament. J. Appl. Polym. Sci. 102(2), 1045–1051 (2006)

    Article  CAS  Google Scholar 

  21. J. Zhang, H. Ma, H. Zhang, The study on the morphology of large-diameter PLA as-spun monofilaments. Sci. Technol. Inf. 36, 211 (2013)

    CAS  Google Scholar 

  22. W.H. Kohler, P. Shrikhande, A.J. McHugh, Modeling Melt Spinning of PLA Fibers. J. Macromolec. Sci. Part B 44(2), 185–202 (2005)

    Article  Google Scholar 

  23. P.J. Wang, N. Ferralis, C. Conway, J.C. Grossman, E.R. Edelman, Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc. Natl. Acad. Sci. U.S.A. 115(11), 2640–2645 (2018)

    Article  CAS  Google Scholar 

  24. G. Kister, G. Cassanas, M. Vert, B. Pauvert, A. Térol, Vibrational analysis of poly (L-lactic acid). J Raman Spectrosc. 26, 307–311 (1995)

    Article  CAS  Google Scholar 

  25. P. Taddei, A. Tinti, G. Fini, Vibrational spectroscopy of polymeric biomaterials. J. Raman Spectrosc. 32, 619–629 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meifang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, J. et al. (2019). A Study on the Radial Difference of PLA Monofilament. In: Han, Y. (eds) Physics and Techniques of Ceramic and Polymeric Materials. CMC 2018. Springer Proceedings in Physics, vol 216. Springer, Singapore. https://doi.org/10.1007/978-981-13-5947-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5947-7_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5946-0

  • Online ISBN: 978-981-13-5947-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics