Skip to main content

Effect of Boron Addition Methods on Microstructure and Mechanical Properties of a Near-α Titanium Alloy

  • Conference paper
  • First Online:
Physics and Engineering of Metallic Materials (CMC 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 217))

Included in the following conference series:

Abstract

This work investigated the effect of boron addition methods on microstructure and mechanical properties of a near-α titanium alloy. Ti–6.5Al–2.5Sn–9Zr–0.5Mo–1W–1Nb–0.25Si was used as the matrix, and 0.3 wt% TiB2 and 0.1 wt% B were added, respectively. The results show that the addition of trace boron forms TiB whiskers on the prior β grain boundaries and leads to significant refinement of the microstructure in the based alloy. And, the refining effect of the 0.3 wt% TiB2 and 0.1 wt% B on the base alloy is similar. At room temperature, the strength of the boron-containing alloys has a certain increase, but the elongation drops slightly. Through study on the microstructure of tensile strained specimens, it was found that the increase of tensile strength of the boron-containing alloys is the combination of the base microstructure and the whisker bearing, while the ductility drops significantly is mainly attributed to the cracking of TiB phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Li, J. Luo, et al., Precision Forging of Titanium Alloy. Science Press (2016)

    Google Scholar 

  2. M.R. Winstone, A. Partridge, J.W. Brooks, The contribution of advanced high-temperature materials to future aero-engines. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 215(2), 63 (2001)

    Google Scholar 

  3. J. Cai, C. Cao, Alloy design and application expectation of a new generation 600 °C high temperature titanium alloy. J. Aeronaut. Mater. 34(4), 27 (in Chinese)

    Google Scholar 

  4. J. Cai, Z. Li, J. Ma, Research and development of 600 °C high temperature titanium alloys for aeroengine. Mater. Rev. (2005)

    Google Scholar 

  5. C.J. Boehlert, C.J. Cowen, S. Tamirisakandala et al., In situ scanning electron microscopy observations of tensile deformation in a boron-modified Ti–6Al–4V alloy. Scripta Mater. 55(5), 465–468 (2006)

    Article  CAS  Google Scholar 

  6. Y. Qin, L. Geng, D. Ni, Dry sliding wear behavior of extruded titanium matrix composite reinforced by in situ TiB whisker and TiC particle. J. Mater. Sci. 46(14), 4980–4985 (2011)

    Article  CAS  Google Scholar 

  7. Z. Zhang, J. Qin, Z. Zhang et al., Microstructure effect on mechanical properties of in situ, synthesized titanium matrix composites reinforced with TiB and La2O3. Mater. Lett. 64(3), 361–363 (2010)

    Article  CAS  Google Scholar 

  8. B.J. Choi, I.Y. Kim, Y.Z. Lee et al., Microstructure and friction/wear behavior of (TiB + TiC) particulate-reinforced titanium matrix composites. Wear 318(1–2), 68–77 (2014)

    Article  CAS  Google Scholar 

  9. J.S. Kim, K.M. Lee, D.H. Cho et al., Fretting wear characteristics of titanium matrix composites reinforced by titanium boride and titanium carbide particulates. Wear 301(1–2), 562–568 (2013)

    Article  CAS  Google Scholar 

  10. S. Gorsse, Y.L. Petitcorps, S. Matar et al., Investigation of the Young’s modulus of TiB needles in situ produced in titanium matrix composite. Mater. Sci. Eng., A 340(1–2), 80–87 (2003)

    Article  Google Scholar 

  11. J.L. Murray, P.K. Liao, K.E. Spear, The B − Ti (Boron-Titanium) system. Bull Alloy Phase Diagr 7(6), 550–555 (1986)

    Article  CAS  Google Scholar 

  12. G. Zorn, Glass formation in boron-containing alloys by mechanical alloying*: Zeitschrift für Physikalische Chemie. Zeitschrift Für Physikalische Chemie, 157(Part_1), 203–208 (1988)

    Article  CAS  Google Scholar 

  13. J.B. Jergenson. Preparation of liquid metal source structures for use in ion beam evaporation of boron-containing alloys (1986)

    Google Scholar 

  14. R. Sarkar, P. Ghosal, K. Muraleedharan et al., Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy. Mater. Sci. Eng., A 528(13–14), 4819–4829 (2011)

    Article  Google Scholar 

  15. J. Zhu, A. Kamiya, T. Yamada et al., Influence of boron addition on microstructure and mechanical properties of dental cast titanium alloys. Mater. Sci. Eng. A 339(1–2), 53–62 (2003)

    Article  Google Scholar 

  16. S. Tamirisakandala, R.B. Bhat, J.S. Tiley et al., Grain refinement of cast titanium alloys via trace boron addition. Scripta Mater. 53(12), 1421–1426 (2005)

    Article  CAS  Google Scholar 

  17. W.G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1(7), 561–586 (1934)

    Article  CAS  Google Scholar 

  18. T.T. Cheng, The mechanism of grain refinement in TiAl alloy by boron addition—an alternative hypothesis. Intermetallics 8(1), 29–37 (2000)

    Article  CAS  Google Scholar 

  19. V.K. Chandravanshi, R. Sarkar, S.V. Kamat et al., Effect of boron on microstructure and mechanical properties of thermomechanically processed near alpha titanium alloy Ti-1100. J. Alloy. Compd. 509(18), 5506–5514 (2011)

    Article  CAS  Google Scholar 

  20. V.K. Chandravanshi, R. Sarkar, P. Ghosal et al., Effect of Minor Additions of Boron on Microstructure and Mechanical Properties of As-Cast Near α, Titanium Alloy[J]. Metall Mater Trans A 41(4), 936–946 (2010)

    Article  Google Scholar 

  21. I. Sen, S. Tamirisakandala, D.B. Miracle et al., Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4V alloys. Acta Mater. 55(15), 4983–4993 (2007)

    Article  CAS  Google Scholar 

  22. S. Gorsse, D.B. Miracle, Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51(9), 2427–2442 (2003)

    Article  CAS  Google Scholar 

  23. W. Lu, Z. Di, X. Zhang et al., Microstructural characterization of TiB in in situ synthesized titanium matrix composites prepared by common casting technique. J. Alloy. Compd. 327(1), 248–252 (2001)

    Article  CAS  Google Scholar 

  24. F. Ma, T. Wang, P. Liu et al., Mechanical properties and strengthening effects of in situ, (TiB + TiC)/Ti-1100 composite at elevated temperatures. Mater. Sci. Eng. A 654, 352–358 (2016)

    Article  CAS  Google Scholar 

  25. V.M. Imayev, R.A. Gaisin, E.R. Gaisina, et al. Microstructure, processing and mechanical properties of a titanium alloy Ti-20Zr-6.5Al-3.3Mo-0.3Si-0.1B. Mater. Sci. Eng. A (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Chai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Chai, L., Ma, X., Cui, Y., Chen, Z., Xiang, Z. (2019). Effect of Boron Addition Methods on Microstructure and Mechanical Properties of a Near-α Titanium Alloy. In: Han, Y. (eds) Physics and Engineering of Metallic Materials. CMC 2018. Springer Proceedings in Physics, vol 217. Springer, Singapore. https://doi.org/10.1007/978-981-13-5944-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5944-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5943-9

  • Online ISBN: 978-981-13-5944-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics