Skip to main content

A Fast Identity Authentication Solution for the Sensing Layer in Internet of Things

  • Conference paper
  • First Online:
Trusted Computing and Information Security (CTCIS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 960))

Included in the following conference series:

  • 536 Accesses

Abstract

Trusted access to the Internet of Things sensing layer node is the precondition for the trusted operation of the Internet of Things. How to quickly and accurately implement identity authentication of a sensing node is currently a research hotspot. After comprehensive consideration of the security requirements and functional requirements of the sensing Node Identity Authentication, this paper proposes a fast identity authentication scheme for sensing nodes. In the identification process of sensing nodes, the data aggregation node is responsible for the selection of system parameters and the registration of sensing nodes. It does not directly participate in the authentication process and simplifies the authentication process. The computational efficiency is high, and the security analysis shows that the scheme has forward security and can resist malicious attacks such as replay attacks, key information disclosure attacks, and forgery attacks. Also, the solution supports key updates. Computational complexity analysis shows that this protocol uses only a small amount of computational complexity in exchange for higher security and more features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Georgakopoulos, D., Jayaraman, P.P.: Internet of Things: from internet scale sensing to smart services. Computing 98(10), 1041–1058 (2016)

    Article  MathSciNet  Google Scholar 

  2. Venkatesh, J., Aksanli, B., Chan, C.S., Akyurek, A.S., Rosing, T.S.: Scalable-application design for the IoT. IEEE Softw. 34(1), 62–70 (2017)

    Article  Google Scholar 

  3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  4. Romana, R., Zhoua, J., Lopezb, J.: On the features and challenges of security & privacy in distributed Internet of Things. Comput. Netw. 57(10), 2266–2279 (2013)

    Article  Google Scholar 

  5. Ntalianis, K., Tsapatsoulis, N.: Remote authentication via biometrics: a robust video-object steganographic mechanism over wireless networks. IEEE Trans. Emerg. Top. Comput. 4(1), 156–174 (2016)

    Article  Google Scholar 

  6. Mosenia, A., Jha, N.K.: A comprehensive study of security of Internet-of-Things. Emerg. Top. Comput. 5(4), 586–602 (2017)

    Article  Google Scholar 

  7. Dao, N.-N., Kim, Y., Jeong, S., Park, M., Cho, S.: Achievable multi-security levels for lightweight IoT-enabled devices in infrastructure less peer-aware communications. IEEE Access 5(3), 26743–26753 (2017)

    Article  Google Scholar 

  8. Hummen, R., Ziegeldorf, J.H., Shafagh, H., Raza, S., Wehrle, K.: Towards viable certificate-based authentication for the Internet of Things. In: Proceedings of the 2nd ACM Workshop on Hot Topics on Wireless Network Security and Privacy, HotWiSec 2013, pp. 37–42 (2013)

    Google Scholar 

  9. Crescenzo, G., Zhang, T., Pietrowicz, S.: Anonymity notions for public-key infrastructures in mobile vehicular networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems, pp. 1–6 (2007)

    Google Scholar 

  10. Raya, M., Papadimitratos, P., Hubaux, J.: Securing vehicular ad hoc networks. J. Comput. Secur. 15(1), 39–68 (2007)

    Article  Google Scholar 

  11. Buttyán, L., Holczer, T., Vajda, I.: On the effectiveness of changing pseudonyms to provide location privacy in VANETs. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 129–141. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73275-4_10

    Chapter  Google Scholar 

  12. Fonseca, E., Festag, A., Baldessari, R., Aguiar, R.L.: Support of anonymity in VANETs-putting pseudonymity into practice. In: IEEE Wireless Communications and Networking Conference, pp. 3400–3405 (2007)

    Google Scholar 

  13. Sampigethaya, K., Li, M., Huang, L., Poovendran, R.: AMOEBA: robust location privacy scheme for VANET. IEEE J. Sel. Areas Commun. 25(8), 1569–1589 (2007)

    Article  Google Scholar 

  14. Juels, A., Rivest, R.: The blocker tag: selective blocking of RFID tags for consumer privacy. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, pp. 103–111 (2003)

    Google Scholar 

  15. Mahalle, P.N., Thakre, P.A., Prasad, N.R., Prasad, R.: A fuzzy approach to trust based access control in Internet of Things. In: Wireless VITAE 2013, pp. 1–5 (2013)

    Google Scholar 

  16. Abbas, R., Shirvanimoghaddam, M., Li, Y., Vucetic, B.: Random access for M2M communications with QoS guarantees. IEEE Trans. Commun 65(7), 2889–2903 (2017)

    Article  Google Scholar 

  17. Li, Y., Chai, K., Chen, Y., Loo, J.: Distributed access control framework for IPv6-based hierarchical Internet of Things. IEEE Wirel. Commun. 16(10), 17–23 (2016)

    Article  Google Scholar 

  18. Chen, I.-R., Bao, F., Guo, J.: Trust-based service management for social Internet of Things systems. IEEE Trans. Dependable Secure Comput. 13(6), 684–696 (2016)

    Article  Google Scholar 

  19. Yu, J., Wang, G., Mu, Y., Gao, W.: An efficient generic framework for three-factor authentication with provably secure instantiation. IEEE Trans. Inf. Forensics Secur. 9(12), 2302–2313 (2014)

    Article  Google Scholar 

  20. Gasti, P., Šeděnka, J., Yang, Q., Zhou, G., Balagani, K.S.: Secure, fast, and energy-efficient outsourced authentication for smartphones. IEEE Trans. Inf. Forensics Secur. 11(11), 2556–2571 (2016)

    Article  Google Scholar 

  21. Liang, T., Chen, J.: Remote attestation project of the running environment of the trusted terminal. J. Softw. 25(6), 1273–1290 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China The key trusted running technologies for the sensing nodes in Internet of things: 61501007, The research of the trusted and security environment for high energy physics scientific computing system: 11675199. General Project of science and technology project of Beijing Municipal Education Commission: KM201610005023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Du, Y., Lou, J., Gong, B. (2019). A Fast Identity Authentication Solution for the Sensing Layer in Internet of Things. In: Zhang, H., Zhao, B., Yan, F. (eds) Trusted Computing and Information Security. CTCIS 2018. Communications in Computer and Information Science, vol 960. Springer, Singapore. https://doi.org/10.1007/978-981-13-5913-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5913-2_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5912-5

  • Online ISBN: 978-981-13-5913-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics