Advertisement

Soil Fertility Improvement by Symbiotic Rhizobia for Sustainable Agriculture

  • Satyavir S. Sindhu
  • Ruchi Sharma
  • Swati Sindhu
  • Anju Sehrawat
Chapter

Abstract

Soil is living medium and it acts as a precarious reserve in agriculture and food production. To enhance crop yields for ever-increasing human population, chemical fertilizers are being applied in the soil. But, the haphazard usage of fertilizers, predominantly nitrogenous and phosphorus, headed to considerable contamination of soil, air and water. Moreover, unwarranted consumption of these agrochemicals also cause lethal effects on soil microorganisms and disturbs the soil fertility. Due to current public apprehensions about the side effects of these agrochemicals, understanding plant and rhizospheric microbial interactions is gaining momentum. It is considered to be important to effectively manage level of nitrogen in soil through biological nitrogen fixation (BNF) to maintain agricultural sustainability. The fixed N is directly taken up in the plants and is less vulnerable to volatilization, denitrification and leaching. Thus, mutualistic symbiosis amongst legume plant and nodulating rhizobia plays a key role in ecological environments. Legume-rhizobia symbioses provide approximately 45% of N used in agriculture and contributions of BNF from the symbiotic association accounts for at least 70 million metric tons per year into terrestrial ecosystems. In agricultural systems, about 80% of BNF contributed by symbiotic association made between leguminous plants and species of Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium, Mesorhizobium and Allorhizobium. The populations of these root-nodule forming bacteria can be changed ecologically, agronomically, edaphically and genetically to increase legume production and soil productivity. Moreover, legume-rhizobia symbioses also provide non-polluting and economical ways to augment N2-fixing potential under stress conditions. Scientists have identified numerous symbiotic systems tolerant in harsh situations of salinity, alkalinity, acidity, drought, toxic metals have been recognized and alteration in rhizobial population under stressed environments can be an indicator of soil fertility. Moreover, interactions among rhizobia, plant growth-promoting rhizobacteria (PGPR) and mycorrhiza as well show significant part in increasing soil fertility and crop yields. In this chapter, significance of biological nitrogen fixation in persistent food supply, influence of extreme environments on legume-rhizobia symbiosis as well as interaction of rhizobia with belowground microbial species are discussed. The eco-friendly approach to increase crop production and soil health by inoculation of symbiotic bacteria as biofertilizers is described for sustainable agriculture.

Keywords

Soil Microbial population Biological nitrogen fixation Rhizobia PGPR 

References

  1. Aamir M, Aslam A, Khan MY, Jamshaid MU, Ahmad M, Asghar HN, Zahir ZA (2013) Coinoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agric Biol 1:17–22Google Scholar
  2. Abd-Alla MH (1994a) Solubilization of rock phosphates by Rhizobium and Bradyrhizobium. Folia Microbiol 39:53–56CrossRefGoogle Scholar
  3. Abd-Alla MH (1994b) Use of organic phosphorus by Rhizobium leguminosarum biovar viciae phosphatases. Biol Fertil Soils 18:216–218CrossRefGoogle Scholar
  4. Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58CrossRefGoogle Scholar
  5. Ahemad M, Khan MS (2009a) Toxicity assessment of herbicides quizalafop-p-ethyl and clodinafop towards Rhizobium pea symbiosis. Bull Environ Contam Toxicol 82:761–766CrossRefGoogle Scholar
  6. Ahemad M, Khan MS (2009b) Effect of insecticide-tolerant and plant growth promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotech 12:217–226CrossRefGoogle Scholar
  7. Ahemad M, Khan MS (2011) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (Vigna) improves the growth and yield of green gram [Vigna radiata (L.) Wilczek] in insecticide stressed soils. Symbiosis 54:17–27CrossRefGoogle Scholar
  8. Ahemad M, Khan MS (2012a) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24:334–343Google Scholar
  9. Ahemad M, Khan MS (2012b) Productivity of green gram in tebuconazole-stressed soil by using a tolerant and plant growth promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34:245–254CrossRefGoogle Scholar
  10. Ahemad M, Khan MS (2012c) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11:63–71Google Scholar
  11. Ahmad D, Mehmannavaz R, Damaj M (1997) Isolation and characterization of symbiotic N2-fixing Rhizobium meliloti from soils contaminated with aromatic and chloroaromatic hydrocarbons: PAHs and PCBs. Int Biodeter Biodegr 39:33–43.  https://doi.org/10.1016/S0964-8305(96)00065-0 CrossRefGoogle Scholar
  12. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181CrossRefGoogle Scholar
  13. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1- carboxylate-deaminase. Can J Microbiol 57:578–589CrossRefGoogle Scholar
  14. Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M (2013) Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176CrossRefGoogle Scholar
  15. Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372Google Scholar
  16. Akkermans ADL (1994) Application of bacteria in soils: problems and pitfalls. FEMS Microbiol Rev 15:185–194CrossRefGoogle Scholar
  17. Alexandre A, Oliveira S (2011) Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. FEMS Microbiol Ecol 75:28–36CrossRefGoogle Scholar
  18. Al-Mallah MK, Davey MR, Cocking EC (1989) Formation of nodular structures on rice seedlings by rhizobia. J Expt Bot 40:473–478CrossRefGoogle Scholar
  19. Andrade G, De Leij FAAM, Lynch JM (1998) Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett Appl Microbiol 26:311–316CrossRefGoogle Scholar
  20. Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–68CrossRefGoogle Scholar
  21. Appelbaum E (2018) The Rhizobium/Bradyrhizobium-legume symbiosis. In: Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 131–158CrossRefGoogle Scholar
  22. Ardourel M, Demont N, Debelle F, Maillet F, de Billy F, Prome JC, Denarie J, Truchet G (1994) Rhizobium meliloti lipo-oligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic development responses. Plant Cell 6:1357–1374CrossRefGoogle Scholar
  23. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677Google Scholar
  24. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620CrossRefGoogle Scholar
  25. Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752CrossRefGoogle Scholar
  26. Awaya JD, Fox PM, Borthakur D (2005) pyd Genes of Rhizobium sp. strain TAL1145 are required for degradation of 3-hydroxy-4-pyridone, an aromatic intermediate in mimosine metabolism. J Bacteriol 187:4480–4487.  https://doi.org/10.1128/JB.187.13.4480-4487.2005 CrossRefGoogle Scholar
  27. Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43(5):1774–1781CrossRefGoogle Scholar
  28. Bajguz A, Tretyn A (2003) The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62:1027–1046CrossRefGoogle Scholar
  29. Barbosa JA, Silva LP, Teles RC, Esteves GF, Azevedo RB, Ventura MM, de Freitas SM (2007) Crystal structure of the Bowman-Birk inhibitor from Vigna unguiculata seeds in complex with β-Trypsin at 1.55 Å resolution and its structural properties in association with proteinases. Biophysical J 92(5):1638–1650CrossRefGoogle Scholar
  30. Barbosa DD, Brito SL, Fernandes PD, Fernandes-Junior PI, Lima LM (2018) Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts? World J Microbiol Biotechnol 34:87.  https://doi.org/10.1007/s11274-018-2474-z CrossRefGoogle Scholar
  31. Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: is it different for Africa? Food Policy 33(4):287–298CrossRefGoogle Scholar
  32. Bender GL, Nayudu M, Le Strange KK, Rolfe BG (1988) The nodDI gene of Rhizobium strain NGR234 is a key determinant in the extension of host range to non-legume Parasponia. Mol Plant Microbe Interact 1:254–256CrossRefGoogle Scholar
  33. Berck S, Perret X, Quesada-Vincens D, Prome JC, Broughten WJ, Jabbouri S (1999) NolL of Rhizobium sp. NGR234 is required for O-acetyltransferase activity. J Bacteriol 181:957–964Google Scholar
  34. Bernard T, Pocard JA, Perroud B, Le Rudulier D (1986) Variations in the response of salt-stressed Rhizobium strains to betaines. Arch Microbiol 143:359–364CrossRefGoogle Scholar
  35. Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510CrossRefGoogle Scholar
  36. Betts JH, Herridge DF (1987) Isolation of soybean lines capable of nodulation and nitrogen fixation under high levels of nitrate supply. Crop Sci 27:1156–1161CrossRefGoogle Scholar
  37. Beynon JL, Beringer JE, Johnston AWB (1980) Plasmids and host range in Rhizobium leguminosarum and Rhizobium phaseoli. J Gen Microbiol 120:421–429Google Scholar
  38. Bhagat D, Sharma P, Sirari A, Kumawat KC (2014) Screening of Mesorhizobium spp. for control of Fusarium wilt in chickpea in vitro conditions. Int J Curr Microbiol Appl Sci 3:923–930Google Scholar
  39. Birkenhead K, Manian SS, O’Gara F (1988) Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J Bacteriol 170:184–189CrossRefGoogle Scholar
  40. Biswas J, Ladha J, Dazzo F (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650CrossRefGoogle Scholar
  41. Bockman OC (1997) Fertilizers and biological nitrogen fixation as sources of plant nutrients: perspectives for future agriculture. Plant Soil 194:11–14CrossRefGoogle Scholar
  42. Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141(1-2):1–11CrossRefGoogle Scholar
  43. Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880CrossRefGoogle Scholar
  44. Bolton H Jr, Elliott LF, Turco RF, Kennedy AC (1990) Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil 123:121–124CrossRefGoogle Scholar
  45. Boncompagni E, Osterås M, Poggi MC, Le Rudulier D (1999) Occurrence of choline and glycine betaine uptake and metabolism in the family rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol 65:2072–2077Google Scholar
  46. Bourion V, Heulin-Gotty K, Aubert V, Tisseyre P, Chabert-Martinello M, Pervent M, Delaitre C, Vile D, Siol M, Duc G, Brunel B (2017) Coinoculation of a pea core-collection with diverse rhizobial strains shows competitiveness for nodulation and efficiency of nitrogen fixation are distinct traits in the interaction. Front Plant Sci 8:2249CrossRefGoogle Scholar
  47. Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41(7):423–431CrossRefGoogle Scholar
  48. Brewin NJ (1991) Development of the legume root nodule. Annu Rev Cell Biol 7:191–226CrossRefGoogle Scholar
  49. Brewin NJ, Beringer JE, Johnston AWB (1980) Plasmid mediated transfer of host range specificity between two strains of Rhizobium leguminosarum. J Gen Microbiol 120:413–420Google Scholar
  50. Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697CrossRefGoogle Scholar
  51. Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–180CrossRefGoogle Scholar
  52. Broughten WJ, Perret X (1999) Geneology of legume-Rhizobium symbioses. Curr Opinion Plant Biol 2:305–311CrossRefGoogle Scholar
  53. Broughten WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652CrossRefGoogle Scholar
  54. Burdman S, Kigel J, Okon Y (1997) Effects of Azospirillum brasilense on nodulation and growth of common bean (Phaseolus vulgaris L.). Soil Biol Biochem 29:923–929CrossRefGoogle Scholar
  55. Burns TA, Bishop PE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandii and Rhizobium. Plant Soil 62(3):399–412CrossRefGoogle Scholar
  56. Callaham DA, Torrey JG (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59:1647–1664CrossRefGoogle Scholar
  57. Camacho M, Santamaria C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Coinoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47(11):1058–1062CrossRefGoogle Scholar
  58. Cao Y, Halane MK, Gassmann W, Stacey G (2017) The role of plant innate immunity in the legume-Rhizobium symbiosis. Annu Rev Plant Biol 68:535–561CrossRefGoogle Scholar
  59. Carroll BJ, McNeil DL, Gresshoff PM (1985) A supernodulation and nitrate tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40CrossRefGoogle Scholar
  60. Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35CrossRefGoogle Scholar
  61. Castillo M, Flores M, Mavingui P, Martinez-Romero E, Palacios R, Hernandez G (1999) Increase in alfalfa nodulation, nitrogen fixation and plant growth by specific DNA amplification in Sinorhizobium meliloti. Appl Environ Microbiol 65:2716–2722Google Scholar
  62. Chaintreuil C, Giraud E, Prin Y, Lorguin J, Ba A, Gillis M, De laiudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447CrossRefGoogle Scholar
  63. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:128–130CrossRefGoogle Scholar
  64. Chanway CP, Hynes RK, Nelson LM (1989) Plant growth promoting rhizobacteria: effect on the growth and nitrogen fixation of lentils (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–512CrossRefGoogle Scholar
  65. Chen C, Zhu H (2013) Are common symbiosis genes required for endophytic rice-rhizobial interactions? Plant Signal Behav 8(9):e25453CrossRefGoogle Scholar
  66. Chen YS, Shiuan D, Chen SC, Chye SM, Chen YL (2003) Recombinant truncated flagellin of Burkholderia pseudomallei as a molecular probe for diagnosis of melioidosis. Clin Diagn Lab Immunol 10(3):423–425Google Scholar
  67. Chen WM, de Faria SM, Chou JH, James EK, Elliott GN, Sprent JI, Bontemps C, Young JP, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58(9):2174–2179CrossRefGoogle Scholar
  68. Choudhary SR, Sindhu SS (2015) Suppression of Rhizoctonia solani root rot disease of clusterbean (Cyamopsis tetragonoloba) and plant growth promotion by rhizosphere bacteria. Plant Pathol J 14:48–57CrossRefGoogle Scholar
  69. Choudhary D, Sindhu SS (2017) Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinoculation of ACC deaminase containing rhizosphere bacteria with Mesorhizobium strains. Legume Res 40(1):80–86Google Scholar
  70. Clawson ML, Carú M, Benson DR (1998) Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl Environ Microbiol 64(9):3539–3543Google Scholar
  71. Clune S, Crossin E, Verghese K (2017) Systematic review of greenhouse gas emissions for different fresh food categories. J Clean Prod 140:766–783CrossRefGoogle Scholar
  72. Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops: a new look. Agro-Industry Hi-Tech. 21–24Google Scholar
  73. Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103(5):1355–1365CrossRefGoogle Scholar
  74. Corvera A, Prome D, Prome JC, Martinez-Romero E, Romero D (1999) The nolL gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. Mol Plant Microbe Interact 12:236–246CrossRefGoogle Scholar
  75. Cregan PB, Keyser HH, Sadowsky MJ (1989) Host plant effect on nodulation and competitiveness of the Bradyrhizobium japonicum serotype strains constituting serocluster 123. Appl Environ Microbiol 55:2532–2536Google Scholar
  76. Crook MB Jr (2013) Modulators of symbiotic outcome in Sinorhizobium meliloti. Brigham Young UniversityGoogle Scholar
  77. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discus 7(4):11191–11205CrossRefGoogle Scholar
  78. Dadarwal KR, Sindhu SS, Batra R (1985) Ecology of Hup+ Rhizobium strains of cowpea miscellany: native frequency and competence. Arch Microbiol 141:255–259CrossRefGoogle Scholar
  79. Dahale SK, Prashanthi SK, Krishnaraj PU (2016) Rhizobium mutant deficient in mineral phosphate solubilization activity shows reduced nodulation and plant growth in green gram. Proc Natl Acad Sci India Sect B Biol Sci 86(3):723–734CrossRefGoogle Scholar
  80. Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  81. Dashti N, Zhang F, Hynes RK, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field grown soybean [Glycine max (L.) Merr.] under short season conditions. Plant Soil 200:205–213CrossRefGoogle Scholar
  82. Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401CrossRefGoogle Scholar
  83. David H, Ian R (2000) Breeding for enhanced nitrogen fixation in crop legumes. Field Crops Res 65:229–248CrossRefGoogle Scholar
  84. Dazzo FB, Yanni YG (2006) The natural Rhizobium-cereal crop association as an example of plant-bacteria interaction. Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 109–127Google Scholar
  85. Debelle F, Maillet F, Vasse J, Rosenberg C, de Billy F, Truchet G, Denarie J, Ausubel FM (1988) Interference between Rhizobium meliloti and Rhizobium trifolii nodulation genes: Genetic basis of R. meliloti dominance. J Bacteriol 170:5718–5727CrossRefGoogle Scholar
  86. Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C (2017) Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol 8:2466–2473CrossRefGoogle Scholar
  87. Delamuta JR, Menna P, Ribeiro RA, Hungria M (2017) Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Syst Appl Microbiol 40(5):254–265CrossRefGoogle Scholar
  88. Denarie J, Debelle F, Rosenberg C (1992) Signaling and host range variation in nodulation. Annu Rev Microbiol 46(1):497–531CrossRefGoogle Scholar
  89. Denarie J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: Signalling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535CrossRefGoogle Scholar
  90. Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–444Google Scholar
  91. Devine TE, Kuykendall LD (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil 186:173–187CrossRefGoogle Scholar
  92. Di Benedetto NA, Corbo MR, Campaniello D, Cataldi MP, Bevilacqua A, Sinigaglia M, Flagella Z (2017) The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. AIMS Microbiol 3(3):413–434CrossRefGoogle Scholar
  93. Dileep Kumar BS, Berggren I, Maartensson AM (2001) Potential for improving pea production by coinoculation with fluorescent Pseudomonas and Rhizobium. Plant Soil 229:25–34CrossRefGoogle Scholar
  94. Dillewijn P, Martinez-Abarca F, Toro N (1998) Multicopy vectors carrying the Klebsiella pneumoniae nifA gene do not enhance the nodulation competitiveness of Sinorhizobium meliloti on alfalfa. Mol Plant Microbe Interact 11:839–842CrossRefGoogle Scholar
  95. Dixon R, Cheng Q, Shen GF, Day A, Day MD (1997) nif genes and expression in chloroplasts: prospects and problems. Plant Soil 194:193–203CrossRefGoogle Scholar
  96. Djordjevic MA, Zurkowski W, Shine J, Rolfe BG (1983) Sym plasmid transfer to symbiotic mutants of Rhizobium trifolii, Rhizobium leguminosarum and Rhizobium meliloti. J Bacteriol 156:1035–1045Google Scholar
  97. Djordjevic MA, Innes RW, Wijffelman CA, Schofield PR, Rolfe BG (1986) Nodulation of specific legumes is controlled by several distinct loci in Rhizobium trifolii. Plant Mol Biol 6:389–401CrossRefGoogle Scholar
  98. Djordjevic MA, Mohd-Radzman NA, Imin N (2015) Small peptide signals that control nodule number, development and symbiosis. J Expt Bot 66:5171–5181.  https://doi.org/10.1007/s11104-015-2445-1 CrossRefGoogle Scholar
  99. Downie JA (1994) Signalling strategies for nodulation of legumes by rhizobia. Trends Microbiol 2(9):318–324CrossRefGoogle Scholar
  100. Dudley ME, Jacob TH, Long SR (1987) Microscopic studies of cell divisions induced in alfalfa roots by Rhizobium meliloti. Planta 171:289–301CrossRefGoogle Scholar
  101. Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-Rhizobium symbiosis. Folia Microbiol 43(4):421–426CrossRefGoogle Scholar
  102. Eaglesham AR (1989) Nitrate inhibition of root-nodule symbiosis in doubly rooted soybean plants. Crop Sci 29(1):115–119CrossRefGoogle Scholar
  103. Echeverria M, Sannazzaro AI, Ruiz OA, Menéndez AB (2013) Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity. Plant Soil 364:69–79CrossRefGoogle Scholar
  104. Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by coinoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369:453–465CrossRefGoogle Scholar
  105. Elkan GH (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40Google Scholar
  106. Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth and yield of chickpea. J Plant Nutr 31:157–171CrossRefGoogle Scholar
  107. Elsheikh EA (1998) Effects of salt on rhizobia and bradyrhizobia: a review. Annal Appl Biol 132(3):507–524CrossRefGoogle Scholar
  108. Emerich DW, Ruiz-Argüeso T, Evans HJ (1979) Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bacteriol 137(1):153–160Google Scholar
  109. Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry and genetics of the uptake hydrogenase in rhizobia. Annu Rev Microbiol 41:355–361CrossRefGoogle Scholar
  110. Faucher C, Maillet F, Vasse J, Rosenberg C, van Brussel AN, Truchet G, Denarie J (1988) Rhizobium meliloti host range nodH determines production of an alfalfa-specific extracellular signal. J Bacteriol 170:5489–5499CrossRefGoogle Scholar
  111. Faucher C, Camut S, Denarie J, Truchet G (1989) The nodH and nodQ host range genes of Rhizobium meliloti behave as virulence genes in R. leguminosarum bv. viciae and determine changes in the production of plant-specific extracellular signals. Mol Plant Microbe Interact 2:291–300CrossRefGoogle Scholar
  112. Ferguson L, Lessenger JE (2006) Plant growth regulators. In: Lessenger JE (ed) Agricultural medicine. Springer, New York, pp 156–166CrossRefGoogle Scholar
  113. Fernández LA, Zalba P, Gómez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol Fertil Soils 43(6):805–809CrossRefGoogle Scholar
  114. Ferreira PAA, Lopes G, Bomfeti CA, de Oliveira Longatti SM, de Sousa Soares CRF, Guilherme LRG, de Souza Moreira FM (2013) Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. World J Microbiol Biotechnol 29:2055–2066CrossRefGoogle Scholar
  115. Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  116. Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386Google Scholar
  117. Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Expt Bot 61:3211–3222CrossRefGoogle Scholar
  118. Fobert PR, Roy N, Nash JH, Iyer VN (1991) Procedure for obtaining efficient root nodulation of a pea cultivar by a desired Rhizobium strain and preempting nodulation by other strains. Appl Environ Microbiol 57:1590–1594Google Scholar
  119. Fox SL, O’Hara GW, Bräu L (2011) Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when coinoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419. Plant Soil 348:245CrossRefGoogle Scholar
  120. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1-2):35–59CrossRefGoogle Scholar
  121. Franzini VI, Azcon R, Mendes FL, Aroca R (2013) Different interaction among Glomus and Rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul 70:265–273CrossRefGoogle Scholar
  122. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 28(43):337–359CrossRefGoogle Scholar
  123. Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401CrossRefGoogle Scholar
  124. Frugier F, Kosuta S, Murray JD, Crespi M, Szczyglowski K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120CrossRefGoogle Scholar
  125. Fujiata K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141:155–175CrossRefGoogle Scholar
  126. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300CrossRefGoogle Scholar
  127. Gal SW, Choi YJ (2003) Isolation and characterization of salt tolerance rhizobia from Acacia root nodules. Agric Chem Biotechnol 46:58–62Google Scholar
  128. Gamas P, Brault M, Jardinaud MF, Frugier F (2017) Cytokinins in symbiotic nodulation: when, where, what for? Trends Plant Sci 22(9):792–802CrossRefGoogle Scholar
  129. Garg FC, Garg RP, Kukreja K, Sindhu SS, Tauro P (1985) Host-dependent expression of uptake hydrogenase in cowpea rhizobia. J Gen Microbiol 131(1):93–96Google Scholar
  130. Ghosh PK, Kumar De T, Maiti TK (2015) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot 2015:1–11CrossRefGoogle Scholar
  131. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316(5829):1307–1312CrossRefGoogle Scholar
  132. Goel AK, Sindhu SS, Dadarwal KR (1999) Bacteriocin producing native rhizobia of green gram (Vigna radiata) having competitive advantage in nodule occupancy. Microbiol Res 154:43–48CrossRefGoogle Scholar
  133. Goel AK, Sindhu SS, Dadarwal KR (2000) Pigment diverse mutants of Pseudomonas sp.: Inhibition of fungal growth and stimulation of growth of Cicer arietinum. Biol Plant 43:563–569CrossRefGoogle Scholar
  134. Goel AK, Sindhu SS, Dadarwal KR (2002) Stimulation of nodulation and plant growth of chickpea (Cicer arietinum) by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soils 36:391–396CrossRefGoogle Scholar
  135. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377CrossRefGoogle Scholar
  136. Gough C, Vasse J, Galera C, Webster G, Cocking E, Denarie J (1997) Interactions between bacterial diazotrophs and non-legume dicots: Arabdiopsis thaliana as a model plant. Plant Soil 194:123–130CrossRefGoogle Scholar
  137. Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38(6):475–484CrossRefGoogle Scholar
  138. Gresshoff PM (2003) Post-genomic insights into plant nodulation symbioses. Genome Biol 4:201.  https://doi.org/10.1186/gb-2003-4-1-201 CrossRefGoogle Scholar
  139. Grimes HD, Mount MS (1984) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 16:27–30CrossRefGoogle Scholar
  140. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240CrossRefGoogle Scholar
  141. Guefrachi I, Rejili M, Mahdhi M, Mars M (2013) Assessing genotypic diversity and symbiotic efficiency of five rhizobial legume interactions under cadmium stress for soil phytoremediation. Int J Phytorem 15:938–951CrossRefGoogle Scholar
  142. Gully D, Teulet A, Busset N, Nouwen N, Fardoux J, Rouy Z, Vallenet D, Cruveiller S, Giraud E (2017) Complete genome sequence of Bradyrhizobium sp. ORS285, a photosynthetic strain able to establish Nod factor-dependent or Nod factor-independent symbiosis with Aeschynomene legumes. Genome Announc 5(30):e00421–e00417CrossRefGoogle Scholar
  143. Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773CrossRefGoogle Scholar
  144. Haggag WM, Abouziena HF, Abd-El-Kreem F, Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm 7(10):882–889Google Scholar
  145. Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus cereus UW85 in the field and in a growth chamber. Appl Environ Microbiol 57:2767–2770Google Scholar
  146. Hanin M, Jabbouri S, Quesada-Vincens D, Freiberg C, Perret X, Prome JC, Broughten WJ, Fallay R (1997) Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host specificity gene. Mol Biol 24:1119–1129Google Scholar
  147. Hanin M, Jabbouri S, Broughten WJ, Fallay R, Quesada-Vincens D (1999) Molecular aspects of host specific nodulation. In: Stacey G, Keen NT (eds) Plant microbe interactions, vol 4. APS Press, St. Paul, pp 1–37Google Scholar
  148. Hansen AP, Peoples MB, Gresshoff PM, Atkins CA, Pate JS, Carroll BJ (1989) Symbiotic performance of supernodulating soybean [Glycine max (L.) Merr.] mutants during development on different nitrogen regimes. J Expt Bot 40:715–724CrossRefGoogle Scholar
  149. Hansena JC, Schillingerb WF, Sullivanb TS, Paulitzc TC (2018) Rhizosphere microbial communities of canola and wheat at six paired field sites. Appl Soil Ecol.  https://doi.org/10.1016/j.apsoil.2018.06.012 CrossRefGoogle Scholar
  150. Hanus FJ, Albrecht SL, Zablotowicz RM, Emerich DW, Russell SA, Evans HJ (1981) Yield and N content of soybean seed as influenced by Rhizobium japonicum inoculants possessing the uptake hydrogenase characteristics. Agron J 73:368–372CrossRefGoogle Scholar
  151. Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M (2005) Vacuolar processing enzyme: an executor of plant cell death. Curr Opin Plant Biol 8:404–408.  https://doi.org/10.1016/j.pbi.2005.05.016 CrossRefGoogle Scholar
  152. Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152(1):1–7CrossRefGoogle Scholar
  153. Hardarson G, Heichel GH, Barnes DK, Vance CP (1982) Rhizobial strain preference of alfalfa populations selected for characteristics associated with N2 fixation. Crop Sci 22:55–58CrossRefGoogle Scholar
  154. Hardy RWF, Havelka UD (1975) Nitrogen fixation research: a key to world food? Science 188:633–643CrossRefGoogle Scholar
  155. Hegazi NA, Vlassak K, Monib M (1979) Effect of amendments, moisture and temperature on acetylene reduction in Nile Delta soil. Plant Soil 51:27–37CrossRefGoogle Scholar
  156. Hemissi I, Mabrouk Y, Mejri S, Saidi M, Sifi B (2013) Enhanced defence responses of chickpea plants against Rhizoctonia solani by pre-inoculation with rhizobia. J Phytopathol 161:412–418CrossRefGoogle Scholar
  157. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311(1–2):1–8CrossRefGoogle Scholar
  158. Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agrepyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24CrossRefGoogle Scholar
  159. Hooykaas PJJ, van Brussel AAN, Den Dulk Ras H, van Slogteren GMS, Schilperoort RA (1981) Sym-plasmid of Rhizobium trifolii expressed in different rhizobial species and Agrobacterium tumefaciens. Nature 291:351–353CrossRefGoogle Scholar
  160. Hooykaas PJJ, Snijdewint FGM, Schilperoort RA (1982) Identification of the sym plasmid of Rhizobium leguminosarum strain 1001 and its transfer to and expression in other rhizobia and Agrobacterium tumefaciens. Plasmid 8:73–82CrossRefGoogle Scholar
  161. Hungaria M, Neves MCP, Dobreiner J (1989) Relative efficiency, ureide transport and harvest index in soybeans inoculated with isogenic Hup- mutants of Bradyrhizobium japonicum. Biol Fertil Soils 7:325–329Google Scholar
  162. Hussain MB, Zahir ZA, Asghar HN (2014a) Can catalase and EPS producing rhizobia ameliorate drought in wheat? Int J Agric Biol 16:3–13Google Scholar
  163. Hussain MB, Zahir ZA, Asghar HN, Mahmood S (2014b) Scrutinizing rhizobia to rescue maize growth under reduced water conditions. Soil Sci Soc Am J.  https://doi.org/10.2136/sssaj2013.07.0315 CrossRefGoogle Scholar
  164. Iqbal MA, Khalid M, Shahzad SM, Ahmad M, Soleman N, Akhtar N (2012) Integrated use of Rhizobium leguminosarum, plant growth promoting rhizobacteria and enriched compost for improving growth, nodulation and yield of lentil (Lens culinaris Medik.). Chil J Agric Res 72:104–110CrossRefGoogle Scholar
  165. Iruthayathas EE, Gunasekaran S, Vlassak K (1983) Effect of combined inoculation of Azospirillum and Rhizobium on nodulation and N2-fixation of winged bean and soybean. Scientia Horti 20(3):231–240CrossRefGoogle Scholar
  166. Ishizuka J (1992) Trends in biological nitrogen fixation research and application. Plant Soil 141:197–209CrossRefGoogle Scholar
  167. Islam MZ, Sattar MA, Ashrafuzzaman M, Berahim Z, Shamsuddoha ATM (2013) Evaluating some salinity tolerant rhizobacterial strains to lentil production under salinity stress. Int J Agric Biol 15:499–504Google Scholar
  168. Itzigsohn R, Kapulnik Y, Okon Y, Dovrat A (1993) Physiological and morphological aspects of interaction between Rhizobium meliloti and alfalfa (Medicago sativa) in association with Azospirillum brasilense. Can J Microbiol 39:610–615CrossRefGoogle Scholar
  169. Jabbouri S, Fallay R, Telmont F, Kamalapriya P, Burger U, Relic B, Prome JC, Broughten WJ (1995) Involvement of nodS in N-methylation and nodU in 6-O-carbomylation of Rhizobium sp. NGR234 Nod factors. J Biol Chem 270:22968–22973CrossRefGoogle Scholar
  170. Jacobson MR, Premakumar R, Bishop PE (1986) Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. J Bacteriol 167:480–486CrossRefGoogle Scholar
  171. Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252(1):177–186CrossRefGoogle Scholar
  172. Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJ, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries: a review. Agron Sustain Dev 32:329–364CrossRefGoogle Scholar
  173. Jeuffroy MH, Baranger E, Carrouée B, Chezelles ED, Gosme M, Hénault C (2013) Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas. Biogeosciences 10:1787–1797CrossRefGoogle Scholar
  174. Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Prod 2:141–152Google Scholar
  175. Jangu OP, Sindhu SS (2011) Differential response of inoculation with acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and blck gram (Vigna mungo L.). Microbiol J 1:159–173CrossRefGoogle Scholar
  176. Kaló P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GED (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789CrossRefGoogle Scholar
  177. Kalra N, Suneja P, Mendiratta N, Gupta N (2013) Simulating the impact of climate change and its variability on growth and yield of crops. Clim Chang Environ Sustain 1(1):11–19CrossRefGoogle Scholar
  178. Karaman MR, Sahin S, Düzdemir O, Kandemir N (2013) Selection of chickpea cultivars with agronomic phosphorus (P) utilization characters as influenced by Rhizobium inoculation. Sci Res Essays 8:676–681Google Scholar
  179. Karasu A, Dogan R (2009) The effect of bacterial inoculation and different nitrogen doses on yield and yield components of some chickpea genotypes (Cicer arietinum L.). Afr J Biotechnol 8(1):59–64Google Scholar
  180. Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Prell J, Skeffington A, Poole PS (2009) Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 191:4002–4014.  https://doi.org/10.1128/jb.00165-09 CrossRefGoogle Scholar
  181. Kassaw T, Jr W, Frugoli J (2015) Multiple autoregulation of nodulation (AON) signals identified through split root analysis of Medicago truncatula sunn and rdn1 mutants. Plants 4(2):209–224CrossRefGoogle Scholar
  182. Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141:93–118CrossRefGoogle Scholar
  183. Kennedy IR, Pereg-Gerk LL, Wood C, Deaker R, Gilcrest K, Katupitia S (1997) Biological nitrogen fixation in non-leguminous field crops: facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194:65–79CrossRefGoogle Scholar
  184. Keum YS, Seo JS, Hu YT, Li QX (2006) Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol 71:935–941.  https://doi.org/10.1007/s00253-005-0219-z CrossRefGoogle Scholar
  185. Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. Ind J Bot Soc 81:255–263Google Scholar
  186. Khanna V, Sharma P (2011) Potential for enhancing lentil (Lens culinaris) productivity by co-inoculation with PSB, plant growth-promoting rhizobacteria and Rhizobium. Indian J Agric Sci 81(10):932–937Google Scholar
  187. Khot GG, Tauro P, Dadarwal KR (1996) Rhizobacteria from chickpea (Cicer arietinum L.) rhizosphere effective in wilt control and promote nodulation. Ind J Microbiol 36:217–222Google Scholar
  188. Kijne JW, Smith G, Diaz CL, Lugtenberg BJJ (1988) Lectin-enhanced accumulation of manganese-limited Rhizobium leguminosarum cells on pea root hair tips. J Bacteriol 170:2994–3000CrossRefGoogle Scholar
  189. Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Aroca R (ed) Springer, pp 383–413Google Scholar
  190. Kinkle BK, Sadowsky MJ, Schmidt EL, Koskinen WC (1993) Plasmids pJP4 and R68.45 can be transferred between populations of bradyrhizobia in nonsterile soil. Appl Environ Microbiol 59:1762–1766Google Scholar
  191. Knight TJ, Langston-Unkefer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science 241:951–954CrossRefGoogle Scholar
  192. Kondorosi A, Vincze E, Johnston AWB, Beringer JE (1980) A comparison of three Rhizobium linkage maps. Mol Gen Genet 178:403–408CrossRefGoogle Scholar
  193. Kondorosi A, Kondorosi E, Pankhurst CE, Broughton WJ, Banfalvi Z (1982) Mobilization of Rhizobium meliloti megaplasmid carrying nodulation and nitrogen fixation genes in other rhizobia and Agrobacterium. Mol Gen Genet 188:433–439CrossRefGoogle Scholar
  194. Krishnan HB, Lewin A, Fallay R, Broughten WJ, Pueppke SG (1992) Differential expression of nodS accounts for the varied abilities of Rhizobium fredii USDA257 and Rhizobium sp. NGR234 to nodulate Leucaena spp. Mol Biol 6:3321–3330Google Scholar
  195. Krishnan HB, Kim KY, Krishnan AH (1999) Expression of a Serratia marcescens chitinase gene in Sinorhizobium fredii USDA191 and Sinorhizobium meliloti RCR2011 impedes soybean and alfalfa nodulation. Mol Plant Microbe Interact 12:748–751CrossRefGoogle Scholar
  196. Kucey RM, Hynes MF (1989) Populations of Rhizobium leguminosarum biovars phaseoli and viceae in fields after bean or pea in rotation with nonlegumes. Can J Microbiol 35(6):661–667CrossRefGoogle Scholar
  197. Kulkarni S, Nautiyal CS (2000) Effects of salt and pH stress on temperature-tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora. Curr Microbiol 40:221–226CrossRefGoogle Scholar
  198. Kumar G, Ram MR (2014) Phosphate solubilizing rhizobia isolated from Vigna trilobata. Am J Microbiol Res 2:105–109CrossRefGoogle Scholar
  199. Lahrouni M, Oufdou K, El Khalloufi F, Baz M, Lafuente A, Dary M, Pajuelo E, Oudra B (2013) Physiological and biochemical defense reactions of Vicia faba L.–Rhizobium symbiosis face to chronic exposure to cyanobacterial bloom extract containing microcystins. Environ Sci Pollut Res 20:5405–5415CrossRefGoogle Scholar
  200. Larrainzar E, Riely B, Kim SC, Carrasquilla-Garcia N, Yu HJ, Hwang HJ, Oh M, Kim GB, Surendrarao A, Chasman D, Siahpirani AF, Penmetsa RV, Lee GS, Kim N, Roy S, Mun JH, Cook DR (2015) Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between Nod factor and ethylene signals. Plant Physiol 169(1):233–265.  https://doi.org/10.1104/pp.15.00350 CrossRefGoogle Scholar
  201. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Prome JC, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784CrossRefGoogle Scholar
  202. Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364CrossRefGoogle Scholar
  203. Lewin A, Cervantes E, Wong CH, Broughton WJ (1990) nodSU, two new nod genes of the broad host-range Rhizobium strain NGR234 encode host specific nodulation of the tropical tree Leucaena leucocephala. Mol Plant Microbe Interact 3:317–326CrossRefGoogle Scholar
  204. Li DM, Alexander M (1988) Coinoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108:211–219CrossRefGoogle Scholar
  205. Li Y, Zhou L, Chen D, Tan X, Lei L, Zhou J (2008) A nodule-specific plant cysteine proteinase, AsNODF32, is involved in nodule senescence and nitrogen fixation activity of the green manure legume Astragalus sinicus. New Phytol 180:185–192.  https://doi.org/10.1111/j.1469-8137.2008.02562.x CrossRefGoogle Scholar
  206. Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis R, Hedden P, Holsters M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiol 139:1366–1379CrossRefGoogle Scholar
  207. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208CrossRefGoogle Scholar
  208. Lindström K, Kokko-Gonzales P, Terefework Z, Räsänen LA (2006) Differentiation of nitrogen-fixing legume root nodule bacteria (rhizobia). Molecular approaches soil, rhizosphere and plant microorganism analysis, p 236Google Scholar
  209. Liu L, Kloepper JW, Tuzun S (1995a) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85(8):843–847CrossRefGoogle Scholar
  210. Liu L, Kloepper JW, Tuzun S (1995b) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85(6):695–698CrossRefGoogle Scholar
  211. Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17CrossRefGoogle Scholar
  212. Long SR (1989) Rhizobium genetics. Annu Rev Genet 23:483–506CrossRefGoogle Scholar
  213. Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898CrossRefGoogle Scholar
  214. Loper J, Schroth M (1986) Influence of bacteria sources of indol-3-acetic acid on root elongation of sugar beet. Phytopathol 76:386–389CrossRefGoogle Scholar
  215. Lopez-Lara IM, Blok-Tip L, Quinto C, Garcia ML, Bloemberg GV, Lamers GEM, Kafetzopoulos D, Stacey G, Lugtenberg BJJ, Thomas-Oates JE, Spaink HP (1996) nodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation factors. Mol Microbiol 21:397–408CrossRefGoogle Scholar
  216. Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX (2009) Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 32(5):351–361CrossRefGoogle Scholar
  217. Lynch JM (1983) Microorganisms and enzymes in the soil. In: Marumoto T, Watanabe I, Satoh K, Kanazawa S (eds) Soil biotechnology, microbiological factors in crop productivity. Blackwell Science Publications, London, p 185Google Scholar
  218. Machado RG, de Sá EL, Bruxel M, Giongo A, da Silva Santos N, Nunes AS (2013) Indole acetic acid producing rhizobia promote growth of Tanzania grass (Panicum maximum) and Pensacola grass (Paspalum saurae). Int J Agric Biol 15:827–834Google Scholar
  219. Martinez E, Palacios R, Sanchez F (1987) Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. J Bacteriol 169:2828–2834CrossRefGoogle Scholar
  220. Mateos PF, Baker DL, Philip-Hollingsworth S, Sqartini A, Peruffo ADB, Nuti MP, Dazzo F (1995) Direct in situ identification of cellulose microfibrils associated with Rhizobium leguminosarum biovar trifolii attached to the root epidermis of white clover. Can J Microbiol 41:202–207CrossRefGoogle Scholar
  221. Mathews A, Carroll BJ (2018) Nitrate inhibition of nodulation in legumes. In: Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 159–180Google Scholar
  222. Mavingui P, Flores M, Romero D, Martinez-Romero E, Palacios R (1997) Generation of Rhizobium strains with improved symbiotic properties by random DNA amplification (RDA). Nat Biotechnol 15:564–569CrossRefGoogle Scholar
  223. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572CrossRefGoogle Scholar
  224. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  225. McIver J, Djordjevic MA, Weinman JJ, Bender GL, Rolfe BG (1989) Extension of host range of Rhizobium leguminosarum bv. trifolii caused by point mutations in nodD that result in alterations in regulatory function and recognition of inducer molecules. Mol Plant Microbe Interact 2:97–106CrossRefGoogle Scholar
  226. Mendoza A, Leija A, Martinez-Romero E, Hernandez G, Mora J (1995) The enhancement of ammonium assimilation in Rhizobium elti prevents nodulation of Phaseolus vulgaris. Mol Plant Microbe Interact 8:584–592CrossRefGoogle Scholar
  227. Mendoza A, Valderrama B, Leija A, Mora J (1998) NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis. Mol Plant Microbe Interact 11:83–90CrossRefGoogle Scholar
  228. Menna P, Hungria M, Barcellos FG, Bangel EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29(4):315–332CrossRefGoogle Scholar
  229. Merberg D, Maier RJ (1983) Mutants of Rhizobium japonicum with increased hydrogenase activity. Science 220:1064–1065CrossRefGoogle Scholar
  230. Mfilinge A, Mtei K, Ndakidemi P (2014) Effect of Rhizobium inoculation and supplementation with phosphorus and potassium on growth and total leaf chlorophyll (Chl) content of bush bean Phaseolus vulgaris, L. Agri Sci 5:1413–1419Google Scholar
  231. Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea–rhizobia symbioses: modulation by salt stress. Plant Physiol Biochem 42:717–722CrossRefGoogle Scholar
  232. Miller RH, May S (1991) Legume inoculation: successes and failures. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 123–134CrossRefGoogle Scholar
  233. Miller-Williams M, Loewen PC, Oresnik IJ (2006) Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. Microbiology 152(7):2049–2059CrossRefGoogle Scholar
  234. Miransari M, Smith D (2009) Rhizobial lipo-chitooligosaccharides and gibberellins enhance barley (Hordeum vulgare L.) seed germination. Biotechnology 8:270–275CrossRefGoogle Scholar
  235. Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452(1):55–68CrossRefGoogle Scholar
  236. Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009) Coinoculation of Bacillus thuringiensis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761CrossRefGoogle Scholar
  237. Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2011) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43CrossRefGoogle Scholar
  238. Miwa H, Sun J, Oldroyd GED, Allan Downie J (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894CrossRefGoogle Scholar
  239. Mondal HK, Mehta S, Kaur H, Gera R (2017) Characterization of stress tolerant mungbean rhizobia as PGPR and plant growth promotion under abiotic stress. Indian J Microbiol 44(4):38–42Google Scholar
  240. Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. InCrop Plant 2012. InTechGoogle Scholar
  241. Mortier V, Den Herder G, Whitford R, Van de Velde W, Rombauts S, D’Haeseleer K, Holsters M, Goormachtig S (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237CrossRefGoogle Scholar
  242. Mortier V, De Wever E, Vuylsteke M, Holsters M, Goormachtig S (2012) Nodule numbers are governed by interaction between CLE peptides and cytokinin signaling. Plant J 70:367–376CrossRefGoogle Scholar
  243. Mytton LR, Brockwell J, Gibson AH (1984) The potential for breeding an improved legume-Rhizobium symbiosis: assessment of genetic variation. Euphytica 33:401–410CrossRefGoogle Scholar
  244. Malik DK, Sindhu SS (2008) Transposon derived mutants of Pseudomonas strains altered in indole acetic acid production: effect on nodulation and plant growth in green gram (Vigna radiata). Physiol Mol Biol Plants 14:315–320CrossRefGoogle Scholar
  245. Nambiar PT, Ma SW, Iyer VN (1990) Limiting an insect infestation of nitrogen-fixing root nodules of the pigeon pea (Cajanus cajan) by engineering the expression of an entomocidal gene in its root nodules. Appl Environ Microbiol 56(9):2866–2869Google Scholar
  246. Nedumaran S, Abinaya P, Jyosthnaa P, Shraavya B, Rao P, Bantilan C (2015) Grain legumes production, consumption and trade trends in developing countries. ICRISAT Res Progr Mark Inst Polic Work Pap Ser 60:4–7Google Scholar
  247. Newbould P (1989) The use of nitrogen fertilizer in agriculture: where do we go practically and ecologically? Plant Soil 115:297–311CrossRefGoogle Scholar
  248. Nieuwkoop AJ, Banfalvi Z, Deshmane N, Gerhold D, Schell MG, Sirotkin KM, Stacey G (1987) A locus encoding host range is linked to the common nodulation genes of Bradyrhizobium japonicum. J Bacteriol 169:2631–2638CrossRefGoogle Scholar
  249. Nishijima F, Evans WR, Vesper SJ (1988) Enhanced nodulation of soybean by Bradyrhizobium in the presence of Pseudomonas fluorescens. Plant Soil 111:149–150CrossRefGoogle Scholar
  250. Norel F, Elmerich C (1987) Nucleotide sequence and functional analysis of the two nifH copies of Rhizobium ORS571. J Gen Microbiol 133:1563–1576Google Scholar
  251. Nutman PS (1984) Improving nitrogen fixation in legumes by plant breeding: The relevance of host selection experiments in red clover (Trifolium pretense L.) and subterraneum clover (T. subterraneum L.). Plant Soil 82:285–301CrossRefGoogle Scholar
  252. Nyoki D, Ndakidemi PA (2014) Effects of phosphorus and Bradyrhizobium japonicum on growth and chlorophyll content of cowpea (Vigna unguiculata (L) Walp). Am J Exp Agric 4:1120–1136Google Scholar
  253. O’Connell KP, Goodman RM, Handelsman J (1996) Engineering the rhizosphere: a expressing a bias. Trends Biotechnol 14:83–86CrossRefGoogle Scholar
  254. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546CrossRefGoogle Scholar
  255. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Rev Microbiol 11(4):252CrossRefGoogle Scholar
  256. Osborn AM (2006) Horizontal gene transfer and its role in the emergence of new phenotypes. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) SGM sumposium 66: procaryotic diversity, mechanisms and significance. Cambridge University Press, Cambridge, pp 275–292CrossRefGoogle Scholar
  257. Oufdou K, Benidire L, Lyubenova L, Daoui K, Fatemi ZEA, Schröder P (2014) Enzymes of the glutathioneascorbate cycle in leaves and roots of rhizobia inoculated faba bean plants (Vicia faba L.) under salinity stress. Eur J Soil Biol 60:98–103CrossRefGoogle Scholar
  258. Papworth A, Maslin M, Randalls S (2015) Is climate change the greatest threat to global health? Geogr J 181:413–422CrossRefGoogle Scholar
  259. Parke D, Rivelli M, Ornston LN (1985) Chemotaxis to aromatic and hydroaromatic acids: comparison of Bradyrhizobium japonicum and Rhizobium trifolii. J Bacteriol 163:417–422Google Scholar
  260. Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202.  https://doi.org/10.1016/j.jhazmat.2014.05.051 CrossRefGoogle Scholar
  261. Patriarca EJ, Tate R, Ioccarino M (2002) Key role of NH4 + metabolism in Rhizobium-plant symbiosis. Microbiol Mol Biol Rev 66:203–222.  https://doi.org/10.1128/mmbr.66.2.203-222.2002 CrossRefGoogle Scholar
  262. Pau AS (1991) Improvement of Rhizobium inoculants by mutation, genetic engineering and formulation. Biotechnol Adv 9:173–184CrossRefGoogle Scholar
  263. Peoples MB, Herridge DF (1990) Nitrogen fixation by legumes in tropical and subtropical agriculture. In: Advances in agronomy, vol 44. Academic, San Diego, pp 155–223Google Scholar
  264. Peoples MB, Boyer EW, Goulding KW, Heffer P, Ochwoh VA, van Lauwe B, Wood S, Yagi K, van Cleemput O (2004) Pathways of nitrogen loss and their impacts on human health and the environment. Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Mosier AR, Sayers JR, Freney JR. SCOPE 65. Island Press, Washington, DC, 53–69Google Scholar
  265. Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJ, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1-3):1–7CrossRefGoogle Scholar
  266. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64(1):180–201CrossRefGoogle Scholar
  267. Pinto FGS, Hungaria M, Mercante FM (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864CrossRefGoogle Scholar
  268. Pladys D, Dmitrijevic L, Rigaud J (1991) Localization of a protease in protoplast preparations in infected cells of French bean nodules. Plant Physiol 97:1174–1180CrossRefGoogle Scholar
  269. Plazinski J, Ridge RW, McKay IA, Djordjevic MA (1994) The nod ABC genes of Rhizobium leguminosarum biovar trifolii confer root-hair curling ability to a diverse range of soil bacteria and the ability to induce novel root swellings on beans. Aus J Plant Physiol 21:311–325Google Scholar
  270. Podile AR (1995) Seed bacterization with Bacillus subtilis AF1 enhances seedling emergence, growth and nodulation of pigeonpea. Indian J Microbiol 35:199–204Google Scholar
  271. Polcyn W, Luciński R (2003) Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus). FEMS Microbiol Lett 226(2):331–337CrossRefGoogle Scholar
  272. Poonthrigpun S, Pattaragulwanit K, Paengthai S, Kriangkripipat T, Juntongjin K, Thaniyavarn S, Petsom A, Pinphanichakarn P (2006) Novel intermediates of acenaphthylene degradation by Rhizobium sp. strain CU-A1: evidence for naphthalene-1,8- dicarboxylic acid metabolism. Appl Environ Microbiol 72:6034–6039.  https://doi.org/10.1128/AEM.00897-06 CrossRefGoogle Scholar
  273. Prabha C, Maheshwari DK, Bajpai VK (2013) Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacogn Mag 9:S57–S65CrossRefGoogle Scholar
  274. Pracht JE, Nickell CD, Harper JE, Bullock DG (1994) Agronomic evaluation of non-nodulating and hypernodulating mutants of soybean. Crop Sci 34:738–740CrossRefGoogle Scholar
  275. Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247–260Google Scholar
  276. Probanza A, Lucas J, Acero N, Mañero FG (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. Plant Soil 182:59–66CrossRefGoogle Scholar
  277. Putnoky P, Kondorosi A (1986) Two gene clusters of Rhizobium meliloti code for early essential nodulation functions and a third influences nodulation efficiency. J Bacteriol 167:881–887CrossRefGoogle Scholar
  278. Quain MD, Makgopa ME, Márquez-García B, Comadira G, Fernandez-Garcia N, Olmos E, Schnaubelt D, Kunert KJ, Foyer CH (2014) Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnol J 12:903–913.  https://doi.org/10.1111/pbi.12193 CrossRefGoogle Scholar
  279. Quain MD, Makgopa ME, Cooper JW, Kunert KJ, Foyer CH (2015) Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. Phytochemistry 112:179–187.  https://doi.org/10.1016/j.phytochem.2014.12.027 CrossRefGoogle Scholar
  280. Quesada-Vincens D, Fallay R, Nassim T, Viprey V, Burger U, Prome JC, Broughten WJ, Jabbouri S (1997) Rhizobium sp. NGR234 NodZ protein is a fucosyltransferase. J Bacteriol 179:5087–5093CrossRefGoogle Scholar
  281. Quinto C, de la Vega H, Flores M, Leemans J, Cevallos MA, Pardo MA, Azpiroz R, de Lourdes GM, Calva E, Palacois R (1985) Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc Natl Acad Sci U S A 82:1170–1174CrossRefGoogle Scholar
  282. Quispel A (1988) Bacteria-plant interactions in symbiotic nitrogen fixation. Physiol Plant 74:783–790.  https://doi.org/10.1111/j.1399-3054.1988.tb02052.x CrossRefGoogle Scholar
  283. Rahmani H, Saleh-Rastin N, Khavazi K, Asgharzadeh A, Fewer D, Kiani S, Lindstrom K (2009) Selection of thermotolerant bradyrhizobial strains for nodulation of soybean (Glycine max L.) in semi-arid regions of Iran. World J Microbiol Biotechnol 25:591–600CrossRefGoogle Scholar
  284. Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550CrossRefGoogle Scholar
  285. Rajwar A, Sahgal M, Johri BN (2013) Legume-rhizobia symbiosis and interactions in agroecosystems. In: Arora NK (ed) Plant microbe symbiosis-fundamentals and advances. Springer, New Delhi, pp 233–265CrossRefGoogle Scholar
  286. Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH (2018) Trends in global agricultural land use: implications for environmental health and food security. Annu Rev Plant Biol 69:789–815CrossRefGoogle Scholar
  287. Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids–a new class of phytohormones. Curr Sci 82:1239–1245Google Scholar
  288. Raverkar KP, Konde BK (1988) Effect of Rhizobium and Azospirillum lipoferum inoculation on the nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106(2):249–252CrossRefGoogle Scholar
  289. Ravikumar R (2012) Growth effects of Rhizobium inoculation in some legume plants. Intern J Curr Sci 1:1–6Google Scholar
  290. Reay DS, Davidson EA, Smith KA, Smith P, Melillo JM, Dentener F, Crutzen PJ (2012) Global agriculture and nitrous oxide emissions. Nat Clim Change 2:410–416CrossRefGoogle Scholar
  291. Reckling M, Hecker JM, Bergkvist G, Watson CA, Zander P, Schläfke N, Stoddard FL, Eory V, Topp CF, Maire J, Bachinger J (2016) A cropping system assessment framework–evaluating effects of introducing legumes into crop rotations. Eur J Agron 76:186–197CrossRefGoogle Scholar
  292. Rehman N, Ali M, Ahmad MZ, Liang G, Zhao J (2018) Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microbiol Pathol 114:420–430CrossRefGoogle Scholar
  293. Reimann S, Hauschild R, Hildebrandt U, Sikora RA (2008) Interrelationships between Rhizobium etli G12 and Glomus intraradices and multitrophic effects in the biological control of the rootknot nematode Meloidogyne incognita on tomato. J Plant Dis Protect 115:108–113CrossRefGoogle Scholar
  294. Relic B, Talmont F, Kopcinska J, Golinowsky W, Prome JC, Broughten WJ (1993) Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptillium atropurpureum. Mol Plant Microbe Interact 6:764–774CrossRefGoogle Scholar
  295. Relic B, Perret X, Estrada-Garcia J, Kopcinska J, Golinowsky W, Krishnan HB, Pueppke SG, Broughten WJ (1994) Nod-factors of Rhizobium are a key to legume door. Mol Microbiol 13:171–178CrossRefGoogle Scholar
  296. Remans R, Croonenborghs A, Torres-Gutierrez R, Michiels J, Vanderleyden J (2007) Effects of plant growth promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant nutrition. Eur J Plant Pathol 119:341–351CrossRefGoogle Scholar
  297. Remans R, Ramaekers L, Schalkens S, Hernandez G, Garcia A, Reyes JL, Mendez N, Toskano V, Mulling M, Galvez L, Vanderleyden J (2008) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37CrossRefGoogle Scholar
  298. Roberts IN, Caputo C, Criado MV, Funk C (2012) Senescence-associated proteases in plants. Physiol Plant 145:130–139.  https://doi.org/10.1111/j.1399-3054.2012.01574.x CrossRefGoogle Scholar
  299. Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–1143CrossRefGoogle Scholar
  300. Rochester IJ (2007) Nutrient uptake and export from an Australian cotton field. Nutr Cycl Agroecosyst 77(3):213–223CrossRefGoogle Scholar
  301. Rogel MA, Hernandez-Lucas I, Kuykendall D, Balkwill DL, Martinez-Romero E (2001) Nitrogen-fixing nodules with Ensifer adhaerens harboring Rhizobium tropici symbiotic plasmids. Appl Environ Microbiol 67:3264–3268CrossRefGoogle Scholar
  302. Rolfe BG, Bender GL (1991) Evolving a Rhizobium for non-legume nodulation. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 779–780Google Scholar
  303. Romdhane SB, Trabelsi M, Aouani ME, de Lajudie P, Mhamdi R (2009) The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants. Soil Biol Biochem 41:2568–2572CrossRefGoogle Scholar
  304. Ronson CW, Bosworth A, Genova M, Gudbrandsen S, Hankinson T, Kwaitowski R, Ratcliffe H, Robie C, Sweeney P, Szeto W, Williams M, Zablotowicz R (1990) Field release of genetically engineered Rhizobium meliloti and Bradyrhizobium japonicum strains. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives. Chapman and Hall, New York, pp 397–403CrossRefGoogle Scholar
  305. Roth LE, Stacey G (1989a) Bacterium release into host cells of nitrogen-fixing nodules: the symbiosome membrane comes from three sources. Eur J Cell Biol 49:13–23Google Scholar
  306. Roth LE, Stacey G (1989b) Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains. Eur J Cell Biol 49:24–32Google Scholar
  307. Russelle MP, Schepers JS, Raun WR (2008) Biological dinitrogen fixation in agriculture. Agronomy 49:281–359Google Scholar
  308. Sabry SRS, Saleh SA, Batchelor CA, Davey MR (1997) In: Xanfu V, Kennedy IR, Tinagwei C (eds) Biological nitrogen fixation, novel association with nonleguminous crops. Qungdao Ocean University Press, China, p 59Google Scholar
  309. Sadowsky MJ, Cregan PB, Gottfert M, Sharma A, Gerhold D, Rodriquez-Quinones F, Keyser HH, Hennecke H, Stacey G (1991) The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci U S A 88:637–641CrossRefGoogle Scholar
  310. Sadowsky MJ, Kosslak RM, Madrzak CJ, Golinska B, Cregan PB (1995) Restriction of nodulation by Bradyrhizobium japonicum is mediated by factors present in the root of Glycine max. Appl Environ Microbiol 61:832–836Google Scholar
  311. Sahasrabudhe MM (2011) Screening of rhizobia for indole acetic acid production. Ann Biol Res 2(4):460–468Google Scholar
  312. Saıdi S, Chebil S, Gtari M, Mhamdi R (2013) Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J Microbiol Biotechnol 29:1099–1106CrossRefGoogle Scholar
  313. Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560.  https://doi.org/10.1038/s41598-018-21921-w CrossRefGoogle Scholar
  314. Saini P, Khanna V (2012) Evaluation of native rhizobacteria as promoters of plant growth for increased yield in lentil (Lens culinaris). Rec Res Sci Technol 4(4):5–9Google Scholar
  315. Saini I, Sindhu SS, Dadarwal KR (1996) Uptake hydrogenase, nitrate Respiration, ex planta nitrogenase expression and symbiotic effectivity of Sesbania rhizobia. Indian J Microbiol 36:93–97Google Scholar
  316. Sanjuan J, Olivares J (1989) Implication of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. J Bacteriol 171:4154–4161CrossRefGoogle Scholar
  317. Sanjuan J, Olivares J (1991a) Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhances Rhizobium meliloti nodulation competitiveness on alfalfa. Mol Plant Microbe Interact 4:365–369CrossRefGoogle Scholar
  318. Sanjuan J, Olivares J (1991b) NifA-NtrA regulatory system activates transcription of nfe, a gene locus involved in nodulation competitiveness of Rhizobium meliloti. Arch Microbiol 155:543–548CrossRefGoogle Scholar
  319. Sassi-Aydi S, Aydi S, Abdelly C (2012) Inoculation with the native Rhizobium gallicum 8a3 improves osmotic stress tolerance in common bean drought-sensitive cultivar. Acta Agric Scand Sect B Soil Plant Sci 62:179–187Google Scholar
  320. Sato T, Yashima H, Ohtake N, Sueyoshi K, Akao S, Ohyama T (1999) Possible involvement of photosynthetic supply in changes of nodule characteristics of hypernodulating soybeans. Soil Sci Plant Nutr 45:187–196CrossRefGoogle Scholar
  321. Saur I, Oakes M, Djordjevic MA, Imin N (2011) Crosstalk between the nodulation signaling pathway and the autoregulation of nodulation in Medicago truncatula. New Phytol 190:865–874CrossRefGoogle Scholar
  322. Sawada H, Kuykendall LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179CrossRefGoogle Scholar
  323. Schlindwein G, Vargas LK, Lisboa BB, Azambuja AC, Granada CE, Gabiatti NC, Prates F, Stumpf R (2008) Influence of rhizobial inoculation on seedling vigor and germination of lettuce. Ciencia Rural 38:658–664CrossRefGoogle Scholar
  324. Schmidt JE, Weese DJ, Lau JA (2017) Long-term agricultural management does not alter the evolution of a soybean–Rhizobium mutualism. Ecol Appl 27(8):2487–2496CrossRefGoogle Scholar
  325. Schofield PR, Ridge RW, Rolfe BG, Shine J, Watson JM (1984) Host-specific nodulation is encloded on a 14 kb fragment in Rhizobium trifolii. Plant Mol Biol 3:3–11CrossRefGoogle Scholar
  326. Schwedock J, Long SR (1992) Rhizobium meliloti genes involved in sulfate activation - The two copies of nod PQ and a new locus, saa. Genetics 132:899–909Google Scholar
  327. Schwenke GD, Herridge DF, Scheer C, Rowlings DW, Haigh BM, McMullen KG (2015) Soil N2O emissions under N2-fixing legumes and N-fertilised canola: a reappraisal of emissions factor calculations. Agric Ecosyst Environ 202:232–242CrossRefGoogle Scholar
  328. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224CrossRefGoogle Scholar
  329. Senbayram M, Wenthe C, Lingner A, Isselstein J, Steinmann H, Kaya C, Köbke S (2016) Legume-based mixed intercropping systems may lower agricultural born N2O emissions. Energy Sustain Soc 6:2CrossRefGoogle Scholar
  330. Sessitsch A, Howieson JG, Perret X, Antoun H (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378.  https://doi.org/10.1080/0735-260291044278 CrossRefGoogle Scholar
  331. Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean. Lett Appl Microbiol 42:155–159CrossRefGoogle Scholar
  332. Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum I.). J Microbiol Biotechnol 17(8):1300Google Scholar
  333. Shahzad SM, Khalid A, Arif MS, Riaz M, Ashraf M, Iqbal Z, Yasmeen T (2014) Coinoculation integrated with P-enriched compost improved nodulation and growth of chickpea (Cicer arietinum L.) under irrigated and rainfed farming systems. Biol Fertil Soils 50:1–12CrossRefGoogle Scholar
  334. Shantharam S, Mattoo AK (1997) Enhancing biological nitrogen fixation: an appraisal of current and alternative technologies for N input into plants. Plant Soil 194:205–216CrossRefGoogle Scholar
  335. Sharma R, Sindhu S, Sindhu SS (2018a) Bioinoculation of mustard (Brassica juncea L.) with beneficial rhizobacteria: a sustainable alternative to improve crop growth. Intern J Curr Microbiol Appl Sci 7(5):1375–1386CrossRefGoogle Scholar
  336. Sharma R, Sindhu S, Sindhu SS (2018b) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150CrossRefGoogle Scholar
  337. Shiri-Janagard M, Raei Y, Gasemi-Golezani K, Aliasgarzard N (2012) Influence of Bradyrhizobium japonicum and phosphate solubilizing bacteria on soybean yield at different levels of nitrogen and phosphorus. Int J Agron Plant Prod 3(11):544–449Google Scholar
  338. Sindhu SS, Dadarwal KR (1986) Ex planta nitorgenase induction and uptake hydrogenase in Rhizobium sp. (cowpea miscellany). Soil Biol Biochem 18(3):291–295CrossRefGoogle Scholar
  339. Sindhu SS, Dadarwal KR (1988) Effect of temperature on nitrogenase and hydrogenase activity in cowpea miscellany hosts. Indian J Microbiol 28(3):178–183Google Scholar
  340. Sindhu SS, Dadarwal KR (1992) Symbiotic effectivity of cowpea miscellany Rhizobium mutants having increased hydrogenase activity. Indian J Microbiol 32:411–416Google Scholar
  341. Sindhu SS, Dadarwal KR (1993) Broadening of host range infectivity in cowpea miscellany Rhizobium by protoplast fusion. Indian J Expt Biol 31:521–528Google Scholar
  342. Sindhu SS, Dadarwal KR (1995a) Hydrogen uptake-measurement of photosynthate limitation in nodules of cowpea miscellany hosts. Microbiol Res 150:213–217CrossRefGoogle Scholar
  343. Sindhu SS, Dadarwal KR (1995b) Molecular biology of nodule development and nitrogen fixation in Rhizobium-legume symbiosis. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Publishing Company, New Delhi, pp 57–129Google Scholar
  344. Sindhu SS, Dadarwal KR (2000) Competition for nodulation among rhizobia in legume-Rhizobium symbiosis. Indian J Microbiol 40(4):211–246Google Scholar
  345. Sindhu SS, Dadarwal KR (2001a) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156(4):353–358CrossRefGoogle Scholar
  346. Sindhu SS, Dadarwal KR (2001b) Genetic manipulation of rhizobia to improve nodulation and nitrogen fixation in legumes. In: Yadav AK, Motsara MR, Ray Choudhary S (eds) Recent advances in biofertilizer technology. Society for Promotion and Utilization of Resources and Technology, New Delhi, pp 1–97Google Scholar
  347. Sindhu SS, Dadarwal KR (2001c) Symbiotic effectiveness of spontaneous antibiotic-resistant mutants of Rhizobium sp. Cicer nodulating chickpea (Cicer arietinum). Microbiol Res 155:325–329. http://www.urbanfischer.de/journals/microbiolres CrossRefGoogle Scholar
  348. Sindhu SS, Lakshminarayana K (1982) Survival and competitive ability of ammonia excreting and non-ammonia excreting Azotobacter chroococcum strains in sterile soil. Plant Soil 69:79–84CrossRefGoogle Scholar
  349. Sindhu SS, Lakshminarayana K, Singh D (1994) Expression of hydrogenase activity in Azotobacter chroococcum and its possible role in crop productivity. Indian J Expt Biol 32:423–426Google Scholar
  350. Sindhu SS, Gupta SK, Dadarwal KR (1999a) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29:62–68CrossRefGoogle Scholar
  351. Sindhu SS, Mor S, Dadarwal KR (1999b) Cell surface polysaccharides of Rhizobium and nodule development on legume roots: recent advances. In: Gakhar SK, Mishra SN (eds) Recent trends in developmental biology. Himalaya Publishing House, New Delhi, pp 204–240Google Scholar
  352. Sindhu SS, Gupta SK, Suneja S, Dadarwal KR (2002a) Enhancement of green gram nodulation and plant growth by Bacillus species. Biol Plant 45:117–120CrossRefGoogle Scholar
  353. Sindhu SS, Suneja S, Goel AK, Parmar N, Dadarwal KR (2002b) Plant growth promoting effects of Pseudomonas sp. on coinoculation with Mesorhizobium sp. Cicer strain under sterile and “wilt sick” soil conditions. Appl Soil Ecol 19:57–64CrossRefGoogle Scholar
  354. Sindhu SS, Sharma HR, Dadarwal KR (2003) Competition among Bradyrhizobium strains for nodulation of green gram (Vigna radiata): use of dark-nodule strain. Folia Microbiol 48(1):83–90CrossRefGoogle Scholar
  355. Sindhu SS, Parmar P, Phour M (2014) Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In: Geomicrobiol biogeochem. Springer, Berlin/Heidelberg, pp 175–198CrossRefGoogle Scholar
  356. Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Defence Life Sci J 1:135–148CrossRefGoogle Scholar
  357. Sindhu SS, Sehrawat A, Sharma R, Dahiya A, Khandelwal A (2017) Belowground microbial crosstalk and rhizosphere Biology. In: Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 695–752Google Scholar
  358. Sindhu SS, Khandelwal A, Phour M, Sehrawat A (2018) Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weed management. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 331–376CrossRefGoogle Scholar
  359. Singh G, Sekhon H, Sharma P (2011) Effect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.). Arch Agron Soil Sci 57:715–726CrossRefGoogle Scholar
  360. Sitrit Y, Barak Z, Kapulnik Y, Oppenheim AB, Chet I (1993) Expression of Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol Plant Microbe Interact 6:293–298CrossRefGoogle Scholar
  361. Sloger C, van Berkum P, Dutta SK (1992) Approaches for enhancing nitrogen fixation in cereal crops. Biological nitrogen fixation associated with rice production. In: Dutta SK, Sloger C (eds), pp 229–234Google Scholar
  362. Smit G, Kijne JW, Lugtenberg BJJ (1987) Involvement of both cellulose fibrils and Ca2+ dependent adhesion in the attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 169:4294–4301CrossRefGoogle Scholar
  363. Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308:1789–1791CrossRefGoogle Scholar
  364. Smith SR, Giller KE (1992) Effective Rhizobium leguminosarum biovar trifolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil. Soil Biol Biochem 24(8):781–788CrossRefGoogle Scholar
  365. So RB, Ladha JK, Young JP (1994) Photosynthetic symbionts of Aeschynomene spp. forms a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Int J Syst Evol Microbiol 44(3):392–403Google Scholar
  366. Soedarjo M, Borthakur D (1998) Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol Biochem 30:1605–1613.  https://doi.org/10.1016/S0038-0717(97)00180-6 CrossRefGoogle Scholar
  367. Soedarjo M, Hemscheidt TK, Borthakur D (1995) Mimosine, a toxin present in leguminous trees (Leucaena spp.), induces a mimosine-degrading enzyme activity in some strains of Rhizobium. Appl Environ Microbiol 60:4268–4272Google Scholar
  368. Solano BR, Maicas JB, FJG M (2008) Physiological and molecular mechanisms of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant-bacteria interactions: Strategies and techniques to promote plant growth. Wiley, Weinheim, pp 41–52CrossRefGoogle Scholar
  369. Somasegaran P, Bohlool BB (1990) Single strain versus multistrain inoculation: Effect of soil mineral N availability on rhizobial strain effectiveness and competition for nodulation on chickpea, soybean and dry bean. Plant Soil 170:351–358Google Scholar
  370. Soto MJ, Zorzano A, Mercado-Blanco J, Lepek V, Olivares J, Toro N (1993) Nucleotide sequence and characterization of Rhizobium meliloti nodulation competitiveness genes nfe. J Mol Biol 229:570–579CrossRefGoogle Scholar
  371. Sougoufara B, Diem HG, Dommergues YR (1989) Response of field grown Casuarina equisetifolia to inoculation with Frankia strain ORS021001 entraped in alginate beads. Plant Soil 118:133–137CrossRefGoogle Scholar
  372. Soussana J-F, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4(3):334–350CrossRefGoogle Scholar
  373. Souza V, Eguiarte L, Avila G, Cappello R, Gallardo C, Montoya J, Pinero D (1994) Genetic structure of Rhizobium etli biovar phaseoli associated with wild and cultivated bean plants (Phaseolus vulgaris and Phaseolus coccineus) in Morelos. Appl Environ Microbiol 60:1260–1268Google Scholar
  374. Spaink HP (1996) Regulation of plant morphogenesis by lipo-chitinoligosaccharides. Crit Rev Plant Sci 15:559–582Google Scholar
  375. Spaink HP, Okker RJH, Wijffelman CA, Tak T, Roo LG, Pees E, van Brussel AAN, Lugtenberg BJJ (1989) Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product. J Bacteriol 171:4045–4053CrossRefGoogle Scholar
  376. Sprent JI, Sprent P (1990) Nitrogen fixing organisms: pure and applied aspects. Chapman & Hall, LondonCrossRefGoogle Scholar
  377. Srinivasan M, Petersen DJ, Holl FB (1997) Nodulation of Phaseolus vulgaris by Rhizobium etli is enhanced in the presence of Bacillus. Can J Microbiol 43:1–8CrossRefGoogle Scholar
  378. Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg S, Carlson RW (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bacteriol 176:620–633CrossRefGoogle Scholar
  379. Stajkovic O, Delic D, Josic D, Kuzmanovic D, Rasulic N, Knezevic-Vukcevic J (2011) Improvement of common bean growth by coinoculation with Rhizobium and plant growth-promoting bacteria. Rom Biotechnol Lett 16:5919–5926Google Scholar
  380. Stevenson FJ (1982) Origin and distribution of nitrogen in soil. In: Stevenson FJ (ed) Nitrogen in agricultural soils, agronomy No. 22. American Society of Agronomy, Madison, pp 1–42Google Scholar
  381. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Ann Rev Phytopathol 43:1–36CrossRefGoogle Scholar
  382. Sturtevant DB, Taller BJ (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89:1247–1252CrossRefGoogle Scholar
  383. Suárez R, Wong A, Ramírez M, Barraza A, Orozco MC, Cevallos MA, Lara M, Hernández G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966CrossRefGoogle Scholar
  384. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989CrossRefGoogle Scholar
  385. Suzuki A, Akune M, Kogiso M, Imagama Y, Osuki KI, Uchiumi T, Higashi S, Han SY, Yoshida S, Asami T, Abe M (2004) Control of nodule number by the phytohormone abscisic acid in the roots of two leguminous species. Plant Cell Physiol 45(7):914–922CrossRefGoogle Scholar
  386. Sy A, Giraud E, Samba R, Gillis M, Dreyfus B (2001) Nodulation of certain legumes of the genus Crotalaria by the new species Methylobacterium. Can J Microbiol 47(6):503–508CrossRefGoogle Scholar
  387. Szeto W, Kwiatkowski R, Cannon FC, Ronson CW (1990) The enhancement of symbiotic nitrogen fixation in Bradyrhizobium japonicum. In: Abstracts of fifth international symposium on the molecular genetics of plant-microbe interactions, Interlaken, Switzerland, p 152Google Scholar
  388. Tairo EV, Ndakidemi PA (2013) Bradyrhizobium japonicum inoculation and phosphorus supplementation on growth and chlorophyll accumulation in soybean (Glycine max L.). Am J Plant Sci 4:2281–2289CrossRefGoogle Scholar
  389. Talano MA, Cejas RB, González PS, Agostini E (2013) Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean. Plant Physiol Biochem 63:8–14CrossRefGoogle Scholar
  390. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58CrossRefGoogle Scholar
  391. Tariq M, Hameed S, Yasmeen T, Ali A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afri J Biotechnol 11(84):15012–15019Google Scholar
  392. Tate RL (1995) Soil microbiology (symbiotic nitrogen fixation). Wiley, New YorkGoogle Scholar
  393. Tchan YT, Kennedy IR (1989) Possible nitrogen-fixing root nodules induced in non-legumes. Agric Sci 2:57–59Google Scholar
  394. Tchebotar V, Kang U, Asis C Jr, Akao S (1998) The use of GUS-reporter gene to study the effect of Azospirillum-Rhizobium coinoculation on nodulation of white clover. Biol Fertil Soils 27:349–352CrossRefGoogle Scholar
  395. Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Exp Bot 58:17–24CrossRefGoogle Scholar
  396. Thies JE, Singleton PW, Bohlool BB (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57(1):19–28Google Scholar
  397. Timmers AC, Auriac MC, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126:3617–3628Google Scholar
  398. Tominaga A, Nagata M, Futsuki K, Abe H, Uchiumi T, Abe M, Kucho KI, Hashiguchi M, Akashi R, Hirsch A, Arima S (2010) Effect of abscisic acid on symbiotic nitrogen fixation activity in the root nodules of Lotus japonicus. Plant Signal Behav 5(4):440–443CrossRefGoogle Scholar
  399. Trinick MJ, Hadobas PA (1995) Formation of nodular structures on the non-legumes Brassica napus, B. campestris, B. juncea and Arabdiopsis thaliana with Bradyrhizobium and Rhizobium isolated from Parasponia spp. or legumes grown in tropical soils. Plant Soil 172:207–219CrossRefGoogle Scholar
  400. Triplett EW (1988) Isolation of genes involved in nodulation competitiveness from Rhizobium leguminosarum bv. trifolii T24. Proc Natl Acad Sci U S A 85:3810–3814CrossRefGoogle Scholar
  401. Triplett EW (1990) Construction of a symbiotically effective strain of Rhizobium leguminosarum bv. trifolii with increased nodulation competitiveness. Appl Environ Microbiol 56:98–103Google Scholar
  402. Truchet G, Rosenberg C, Vasse J, Julliot JS, Camut S, Denarie J (1984) Transfer of Rhizobium meliloti sym genes into Agrobacterium tumefaciens: host specific nodulation by a typical infection. J Bacteriol 157:134–142Google Scholar
  403. Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Liu W, Christie P (2011) Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. J Hazard Mater 186:1438–1444.  https://doi.org/10.1016/j.jhazmat.2010.12.008 CrossRefGoogle Scholar
  404. Turner JT, Backman PA (1991) Factors relating to peanut yield increased following Bacillus subtilis seed treatment. Plant Dis 75:347–353CrossRefGoogle Scholar
  405. Uma C, Sivagurunathan P, Sangeetha D (2013) Performance of bradyrhizobial isolates under drought conditions. Int J Curr Microbiol App Sci 2:228–232Google Scholar
  406. Urban JE, Davis L, Brown SJ (1986) Rhizobium trifolii 0403 is capable of growth in the absence of combined nitrogen. Appl Environ Microbiol 52(5):1060–1067Google Scholar
  407. Uribe AL, Winham DM, Wharton CM (2012) Community supported agriculture membership in Arizona. An exploratory study of food and sustainability behaviours. Appetite 59(2):431–436CrossRefGoogle Scholar
  408. van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10(2):127–133CrossRefGoogle Scholar
  409. van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135Google Scholar
  410. van Wyk SG, Du Plessis M, Cullis C, Kunert KJ, Vorster BJ (2014) Cysteine protease and cystatin expression and activity during soybean nodule development and senescence. BMC Plant Biol 14:294–307.  https://doi.org/10.1186/s12870-014-0294-3 CrossRefGoogle Scholar
  411. van Zeijl A, Op den Camp RH, Deinum EE, Charnikhova T, Franssen H, Op den Camp HJ, Bouwmeester H, Kohlen W, Bisseling T, Geurts R (2015) Rhizobium lipo-chitooligosaccharide signaling triggers accumulation of cytokinins in Medicago truncatula roots. Mol Plant 8:1213–1226CrossRefGoogle Scholar
  412. Valverde A, Araceli B, Tiziana F, Rivas R, Encarna R, Claudio V, Emilio R, Manual C, Jose-Mariano C (2006) Differential effects of inoculation with Pseudomonas jessenii PS06 and Mesorhizobium ciceri C-212 strain on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50CrossRefGoogle Scholar
  413. Vande Velde W, Guerra JC, De Keyser A, De Rycke R, Rombauts S, Maunoury N, Mergaert P, Kondorosi E, Holsters M, Goormachtig S (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiol 141:711–720.  https://doi.org/10.1104/pp.106.078691 CrossRefGoogle Scholar
  414. Vardhini BV, Ram Rao SS (1999) Effect of brassionosteriods on nodulation and nitrogenase activity in groundnut (Arachis hypogaea L.). Plant Growth Regul 28(3):165–167CrossRefGoogle Scholar
  415. Vargas LK, Lisboa BB, Schlindwein G, Granada CE, Giongo A, Beneduzi A, Passaglia LMP (2009) Occurrence of plant growth-promoting traits in clover-nodulating rhizobia strains isolated from different soils in Rio Grande do Sul state. R Bras Ci Solo 33:1227–1235CrossRefGoogle Scholar
  416. Varin S, Lemauviel-Lavenant S, Bernard-Cliquet J, Diquelou S, Padraic T, Mischaelson-Yeates T (2009) Functional plasticity of Trifolium repens L. in response to sulphur and nitrogen availability. Plant Soil 317:189–200.  https://doi.org/10.1007/s11104-008-9800-4 CrossRefGoogle Scholar
  417. Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306CrossRefGoogle Scholar
  418. Velázquez E, Martínez-Romero E, Rodríguez-Navarro DM, Trujillo ME, Daza A, Mateos PE, MartínezMolina E, van Berkum P (2001) Characterization of rhizobial isolates of Phaseolus vulgaris by staircase electrophoresis of low-molecular weight RNA. Appl Environ Microbiol 67:1008–1010CrossRefGoogle Scholar
  419. Venkateshwaran M, Volkening JD, Sussman MR, Ané JM (2013) Symbiosis and the social network of higher plants. Curr Opin Plant Biol 16(1):118–127CrossRefGoogle Scholar
  420. Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286CrossRefGoogle Scholar
  421. Verma JP, Yadav J, Tiwari KN, Jaiswal DK (2014) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37CrossRefGoogle Scholar
  422. Vidor C, Miller RH (1980) Relative saprophytic competence of Rhizobium japonicum strains in soils as determined by the quantitative fluorescent antibody (FA) technique. Soil Biol Biochem 12(5):483–487CrossRefGoogle Scholar
  423. Vineusa P, Léon-Barrios M, Silva C, Willems A, JabaroLorenzo A, Pérez-Galdona R, Werner D, MartínezRomero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575CrossRefGoogle Scholar
  424. Vlassak KM, Vanderleyden J, Franco A (1996) Competition and persistence of Rhizobium tropici and R. etli in tropical soil during successive bean (Phaseolus vulgaris L.) cultures. Biol Fertil Soils 21:61–66CrossRefGoogle Scholar
  425. Vriezen JAC, de Bruijn FJ, Nusslein K (2007) Responses of rhizobia to desiccation in relation to osmotic stress, oxygen and temperature. Appl Environ Microbiol 73:3451–3459CrossRefGoogle Scholar
  426. Waelkens F, Voets T, Vlassak K, Vanderleyden J, van Rhizn P (1995) The nodS gene of Rhizobium tropici CIAT899 is necessary for nodulation of Phaseolus vulgaris and Leucaena leucocephala. Mol Plant Microbe Interact 8:147–154CrossRefGoogle Scholar
  427. Walpola BC, Yoon M-H (2013) Isolation and characterization of phosphate solubilizing bacteria and their coinoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res 7(3):266–275Google Scholar
  428. Wang TL, Wood EA, Brewin NJ (1982) Growth regulators and nodulation in peas. The cytokinin content of a wild type and a Ti plasmid containing strain of R. leguminosarum. Planta 155:350–355CrossRefGoogle Scholar
  429. Wang ET, Rogel A, Santos AG, Martínez-Romero J, Cevallos MA, Martínez-Romero E (1999) Rhizobium etli bv mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49:1479–1491CrossRefGoogle Scholar
  430. Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91:117–124CrossRefGoogle Scholar
  431. Wani SP, Rupela OP, Lee KK (1995) Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant Soil 174:29–49CrossRefGoogle Scholar
  432. Wani PA, Khan MS, Zaidi A (2007a) Coinoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323CrossRefGoogle Scholar
  433. Wani PA, Khan MS, Zaidi A (2007b) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (Vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45CrossRefGoogle Scholar
  434. Wani PA, Khan MS, Zaidi A (2007c) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287CrossRefGoogle Scholar
  435. Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163CrossRefGoogle Scholar
  436. Webster G, Davey MR, Cocking EC (1995) Parasponia with rhizobia: a neglected non-legume nitrogen-fixing symbiosis. AgBiotech News Info 7:119N–124NGoogle Scholar
  437. Webster G, Gough C, Vasse J, Batchelor CA, O’Callaghan KJ, Kothari SL, Davey MR (1997) Interactions of rhizobia with rice and wheat. Plant Soil 194:115–122CrossRefGoogle Scholar
  438. Werner D (2005) Production and biological nitrogen fixation of tropical legumes. In: Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 1–13CrossRefGoogle Scholar
  439. Williams MK, Beynon JL, Ronson CW, Cannon FC (1990) In: Abstracts of fifth international symposium on the molecular genetics of plant-microbe interactions. Interlaken, Switzerland, p 152Google Scholar
  440. Wilson KJ, Peoples MB, Jefferson RA (1995) New techniques for studying competition by rhizobia and for assessing nitrogen fixation in the field. Plant Soil 174:241–253CrossRefGoogle Scholar
  441. Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178:161–169CrossRefGoogle Scholar
  442. Woomer P, Singleton PW, Bohlool BB (1988) Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbiol 54(5):1112–1116Google Scholar
  443. Xiao TT, Schilderink S, Moling S, Deinum EE, Kondorosi E, Franssen H, Kulikova O, Niebel A, Bisseling T (2014) Fate map of Medicago truncatula root nodules. Development 141:3517–3528CrossRefGoogle Scholar
  444. Yadav A, Gaur I, Goel N, Mitra J, Saleem B, Goswami S, Paul PK, Upadhyaya KC (2015) Rhizospheric microbes are excellent plant growth promoters. Indian J Natur Sci 5(30):6584–6595Google Scholar
  445. Yadegari M, Rahmani HA, Noormohammadi G, Ayneband A (2008) Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting rhizobacteria on yield and yield components. Pak J Biol Sci PJBS 11(15):1935–1939CrossRefGoogle Scholar
  446. Yamato M, Nakayama Y, Yokoyama T, Ueno O, Akao S (1997) Nodulation of Rhizobium fredii USDA192 containing Rhizobium leguminosarum bv. trifolii ANU843 nod genes on homologous host soybean and heterologous host clover. Soil Sci Plant Nutr 43:51–61CrossRefGoogle Scholar
  447. Yang L, Tang R, Zhu J, Liu H, Mueller-Roeber B, Xia H, Zhang H (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66(4):329–343CrossRefGoogle Scholar
  448. Yang S, Tang F, Gao M, Krishnan HB, Zhu H (2010) R gene-controlled host specificity in the legume–rhizobia symbiosis. Proc Natl Acad Sci 107(43):18735–18740CrossRefGoogle Scholar
  449. Yasmeen T, Hameed S, Tariq M, Ali S (2012) Significance of arbuscular mycorrhizal and bacterial symbionts in a tripartite association with Vigna radiate. Acta Physiol Plant 34:1519–1528CrossRefGoogle Scholar
  450. Young JPW, Johnston AWB (1989) The evolution of specificity in the legume-Rhizobium symbiosis. Trends Ecol Evol 4:341–349CrossRefGoogle Scholar
  451. Yu X, Liu X, Zhu TH, Liu GH, Mao C (2012) Coinoculation with phosphate-solubilzing and nitrogen-fixing bacteria on solubilization of rock phosphate and their effect on growth promotion and nutrient uptake by walnut. Euro J Soil Biol 50:112–117CrossRefGoogle Scholar
  452. Zafar-ul-Hye M, Ahmad M, Shahzad SM (2013) Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. Soil Environ 32:79–86Google Scholar
  453. Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294CrossRefGoogle Scholar
  454. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989Google Scholar
  455. Zhang XP, Karsisto M, Harper R, Lindstrom K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113CrossRefGoogle Scholar
  456. Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth promoting rhizobacteria and soybean {Glycine max (L.) Merr.} nodulation and nitrogen fixation at suboptimal root zone temperatures. Annals Bot 77:453–459CrossRefGoogle Scholar
  457. Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Satyavir S. Sindhu
    • 1
  • Ruchi Sharma
    • 1
  • Swati Sindhu
    • 1
  • Anju Sehrawat
    • 1
  1. 1.Department of MicrobiologyCCS Haryana Agricultural UniversityHisarIndia

Personalised recommendations