Cook MJ. The anatomy of the laboratory mouse, vol. 143. London: Academic Press; 1965.
Google Scholar
Nilsson O, Reinius S. Light and electron microscopic structure of the oviduct. In: Hafez ESE, Blandau RJ, Washington State University, editors. The mammalian oviduct comparative biology and methodology. Chicago, IL: University of Chicago Press; 1969. p. 57–83.
Google Scholar
Eddy CA, Pauerstein CJ. Anatomy and physiology of the fallopian tube. Clin Obstet Gynecol. 1980;23(4):1177–93.
CAS
PubMed
CrossRef
Google Scholar
Blandau RJ. Gamete transport—comparative aspects. In: Hafez ESE, Blandau RJ, Washington State University, editors. The mammalian oviduct comparative biology and methodology. Chicago, IL: University of Chicago Press; 1969. p. 129–62.
Google Scholar
Paton DM, Widdicombe JH, Rheaume DE, Johns A. The role of the adrenergic innervation of the oviduct in the regulation of mammalian ovum transport. Pharmacol Rev. 1977;29(2):67–102.
CAS
PubMed
Google Scholar
Croxatto HB. Physiology of gamete and embryo transport through the fallopian tube. Reprod Biomed Online. 2002;4(2):160–9.
CAS
PubMed
CrossRef
Google Scholar
Hafez ESE, Black DL. The mammalian uterotubal junction. In: Hafez ESE, Blandau RJ, Washington State University, editors. The mammalian oviduct comparative biology and methodology. Chicago, IL: University of Chicago Press; 1969. p. 105–6.
Google Scholar
Foster HL, Small JD, Fox JG. The mouse in biomedical research, American College of Laboratory Animal Medicine series, vol. 4. New York: Academic Press; 1981.
Google Scholar
Ezzati M, Djahanbakhch O, Arian S, Carr BR. Tubal transport of gametes and embryos: a review of physiology and pathophysiology. J Assist Reprod Genet. 2014;31(10):1337–47. https://doi.org/10.1007/s10815-014-0309-x.
CrossRef
PubMed
PubMed Central
Google Scholar
Faussone-Pellegrini MS, Bani G. The muscle coat morphology of the mouse oviduct during the estrous cycle. Arch Histol Cytol. 1990;53(2):167–78.
CAS
PubMed
CrossRef
Google Scholar
Abe H. The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells. Histol Histopathol. 1996;11(3):743–68.
CAS
PubMed
Google Scholar
Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum Reprod Update. 2006;12(4):363–72.
CAS
PubMed
CrossRef
Google Scholar
Amso NN, Crow J, Lewin J, Shaw RW. A comparative morphological and ultrastructural study of endometrial gland and fallopian tube epithelia at different stages of the menstrual cycle and the menopause. Hum Reprod. 1994;9(12):2234–41.
CAS
PubMed
CrossRef
Google Scholar
Crow J, Amso NN, Lewin J, Shaw RW. Morphology and ultrastructure of fallopian tube epithelium at different stages of the menstrual cycle and menopause. Hum Reprod. 1994;9(12):2224–33.
CAS
PubMed
CrossRef
Google Scholar
Dirksen ER, Satir P. Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell. 1972;4(3):389–403.
CAS
PubMed
CrossRef
Google Scholar
Patek E. The epithelium of the human Fallopian tube. A surface ultrastructural and cytochemical study. Acta Obstet Gynecol Scand Suppl. 1974;31:1–28.
CAS
PubMed
Google Scholar
Croxatto HB, Villalon M. Oocyte transport. In: Grudzinskas JG, Yovich J, editors. Gametes the oocyte. Cambridge reviews in human reproduction. Cambridge: Cambridge University Press; 1995. p. 253–76.
Google Scholar
Leese HJ, Tay JI, Reischl J, Downing SJ. Formation of Fallopian tubal fluid: role of a neglected epithelium. Reproduction. 2001;121(3):339–46.
CAS
PubMed
CrossRef
Google Scholar
Paltieli Y, Eibschitz I, Ziskind G, Ohel G, Silbermann M, Weichselbaum A. High progesterone levels and ciliary dysfunction—a possible cause of ectopic pregnancy. J Assist Reprod Genet. 2000;17(2):103–6.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mahmood T, Saridogan E, Smutna S, Habib AM, Djahanbakhch O. The effect of ovarian steroids on epithelial ciliary beat frequency in the human Fallopian tube. Hum Reprod. 1998;13(11):2991–4.
CAS
PubMed
CrossRef
Google Scholar
Nishimura A, Sakuma K, Shimamoto C, Ito S, Nakano T, Daikoku E, Ohmichi M, Ushiroyama T, Ueki M, Kuwabara H, Mori H, Nakahari T. Ciliary beat frequency controlled by oestradiol and progesterone during ovarian cycle in guinea-pig Fallopian tube. Exp Physiol. 2010;95(7):819–28. https://doi.org/10.1113/expphysiol.2010.052555.
CAS
CrossRef
PubMed
Google Scholar
Talbot P, Geiske C, Knoll M. Oocyte pickup by the mammalian oviduct. Mol Biol Cell. 1999;10(1):5–8.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhuo L, Kimata K. Cumulus oophorus extracellular matrix: its construction and regulation. Cell Struct Funct. 2001;26(4):189–96.
CAS
PubMed
CrossRef
Google Scholar
Pauerstein CJ, Eddy CA. The role of the oviduct in reproduction; our knowledge and our ignorance. J Reprod Fertil. 1979;55(1):223–9.
CAS
PubMed
CrossRef
Google Scholar
Norwood JT, Hein CE, Halbert SA, Anderson RG. Polycationic macromolecules inhibit cilia-mediated ovum transport in the rabbit oviduct. Proc Natl Acad Sci USA. 1978;75(9):4413–6.
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Halbert SA, Becker DR, Szal SE. Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod. 1989;40(6):1131–6.
CAS
PubMed
CrossRef
Google Scholar
Halbert SA, Tam PY, Blandau RJ. Egg transport in the rabbit oviduct: the roles of cilia and muscle. Science. 1976;191(4231):1052–3.
CAS
PubMed
CrossRef
Google Scholar
Dixon RE, Hwang SJ, Hennig GW, Ramsey KH, Schripsema JH, Sanders KM, Ward SM. Chlamydia infection causes loss of pacemaker cells and inhibits oocyte transport in the mouse oviduct. Biol Reprod. 2009;80(4):665–73. https://doi.org/10.1095/biolreprod.108.073833.
CAS
CrossRef
PubMed
Google Scholar
Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2.
PubMed
PubMed Central
CrossRef
Google Scholar
Fitzharris G, Baltz JM. Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development. 2006;133(4):591–9.
CAS
PubMed
CrossRef
Google Scholar
Hodgson BJ, Talo A, Pauerstein CJ. Oviductal ovum surrogate movement: interrelation with muscular activity. Biol Reprod. 1977;16(3):394–6.
CAS
PubMed
CrossRef
Google Scholar
Eddy CA, Flores JJ, Archer DR, Pauerstein CJ. The role of cilia in fertility: an evaluation by selective microsurgical modification of the rabbit oviduct. Am J Obstet Gynecol. 1978;132(7):814–21.
CAS
PubMed
CrossRef
Google Scholar
Afzelius BA, Camner P, Mossberg B. On the function of cilia in the female reproductive tract. Fertil Steril. 1978;29(1):72–4.
CAS
PubMed
CrossRef
Google Scholar
Raidt J, Werner C, Menchen T, Dougherty GW, Olbrich H, Loges NT, Schmitz R, Pennekamp P, Omran H. Ciliary function and motor protein composition of human fallopian tubes. Hum Reprod. 2015;30(12):2871–80. https://doi.org/10.1093/humrep/dev227.
CAS
CrossRef
PubMed
Google Scholar
Overstreet JW, Cooper GW. Sperm transport in the reproductive tract of the female rabbit: I. The rapid transit phase of transport. Biol Reprod. 1978;19(1):101–14.
CAS
PubMed
CrossRef
Google Scholar
Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update. 2006;12(1):23–37.
CAS
PubMed
CrossRef
Google Scholar
Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int J Dev Biol. 2008;52(5–6):455–62.
PubMed
CrossRef
Google Scholar
Suarez SS. Sperm transport and motility in the mouse oviduct: observations in situ. Biol Reprod. 1987;36(1):203–10.
CAS
PubMed
CrossRef
Google Scholar
Okabe M. Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J Androl. 2015;17(4):646–52. https://doi.org/10.4103/1008-682X.153299.
CrossRef
PubMed
PubMed Central
Google Scholar
Muro Y, Hasuwa H, Isotani A, Miyata H, Yamagata K, Ikawa M, Yanagimachi R, Okabe M. Behavior of mouse spermatozoa in the female reproductive tract from soon after mating to the beginning of fertilization. Biol Reprod. 2016;94(4):80. https://doi.org/10.1095/biolreprod.115.135368.
CAS
CrossRef
PubMed
Google Scholar
Blandau RJ, Gaddum-Rosse P. Mechanism of sperm transport in pig oviducts. Fertil Steril. 1974;25(1):61–7.
CAS
PubMed
CrossRef
Google Scholar
Battalia DE, Yanagimachi R. Enhanced and co-ordinated movement of the hamster oviduct during the periovulatory period. J Reprod Fertil. 1979;56(2):515–20.
CAS
PubMed
CrossRef
Google Scholar
Chang H, Suarez SS. Unexpected flagellar movement patterns and epithelial binding behavior of mouse sperm in the oviduct. Biol Reprod. 2012;86(5):140, 141–8. https://doi.org/10.1095/biolreprod.111.096578.
CAS
CrossRef
Google Scholar
Yanagimachi R, Chang MC. Sperm ascent through the oviduct of the hamster and rabbit in relation to the time of ovulation. J Reprod Fertil. 1963;6:413–20.
CAS
PubMed
CrossRef
Google Scholar
Overstreet JW, Cooper GW. Sperm transport in the reproductive tract of the female rabbit: II. The sustained phase of transport. Biol Reprod. 1978;19(1):115–32.
CAS
PubMed
CrossRef
Google Scholar
Wilcox AJ, Weinberg CR, Baird DD. Timing of sexual intercourse in relation to ovulation. Effects on the probability of conception, survival of the pregnancy, and sex of the baby. N Engl J Med. 1995;333(23):1517–21.
CAS
PubMed
CrossRef
Google Scholar
Kervancioglu ME, Djahanbakhch O, Aitken RJ. Epithelial cell coculture and the induction of sperm capacitation. Fertil Steril. 1994;61(6):1103–8.
CAS
PubMed
CrossRef
Google Scholar
Rodriguez-Martinez H. Role of the oviduct in sperm capacitation. Theriogenology. 2007;68(Suppl 1):S138–46.
CAS
PubMed
CrossRef
Google Scholar
Demott RP, Suarez SS. Hyperactivated sperm progress in the mouse oviduct. Biol Reprod. 1992;46(5):779–85.
CAS
PubMed
CrossRef
Google Scholar
Morales P, Palma V, Salgado AM, Villalon M. Sperm interaction with human oviductal cells in vitro. Hum Reprod. 1996;11(7):1504–9.
CAS
PubMed
CrossRef
Google Scholar
Pauerstein CJ. Pathophysiology of the Fallopian tube. Clin Obstet Gynecol. 1974;17(2):89–119.
CAS
PubMed
CrossRef
Google Scholar
Killian GJ. Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim Reprod Sci. 2004;82-83:141–53.
CAS
PubMed
CrossRef
Google Scholar
Nishimura T, Nakajima A, Hayashi T. The basic pattern of electrical activities in the rabbit fallopian tube. Acta Obstet Gynaecol Jpn. 1969;16(2):97–103.
CAS
PubMed
Google Scholar
Brundin J, Talo A. The effects of estrogen and progesterone on the electric activity and intraluminal pressure of the castrated rabbit oviduct. Biol Reprod. 1972;7(3):417–24.
CAS
PubMed
CrossRef
Google Scholar
Talo A. Electric and mechanical activity of the rabbit oviduct in vitro before and after ovulation. Biol Reprod. 1974;11(3):335–45.
CAS
PubMed
CrossRef
Google Scholar
Talo A, Brundin J. Muscular activity in the rabbit oviduct: a combination of electric and mechanic recordings. Biol Reprod. 1971;5(1):67–77.
CAS
PubMed
CrossRef
Google Scholar
Talo A, Hodgson BJ. Spike bursts in rabbit oviduct. I. Effect of ovulation. Am J Physiol. 1978;234(4):E430–8.
CAS
PubMed
Google Scholar
Tomita T, Watanabe H. Factors controlling myogenic activity in smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973;265(867):73–85.
CAS
PubMed
CrossRef
Google Scholar
Dixon RE, Britton FC, Baker SA, Hennig GW, Rollings CM, Sanders KM, Ward SM. Electrical slow waves in the mouse oviduct are dependent on extracellular and intracellular calcium sources. Am J Physiol Cell Physiol. 2011;301(6):C1458–69. https://doi.org/10.1152/ajpcell.00293.2011.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Dixon RE, Hennig GW, Baker SA, Britton FC, Harfe BD, Rock JR, Sanders KM, Ward SM. Electrical slow waves in the mouse oviduct are dependent upon a calcium activated chloride conductance encoded by Tmem16a. Biol Reprod. 2012;86(1):1–7. https://doi.org/10.1095/biolreprod.111.095554.
CAS
CrossRef
PubMed
Google Scholar
Dixon RE, Ramsey KH, Schripsema JH, Sanders KM, Ward SM. Time-dependent disruption of oviduct pacemaker cells by Chlamydia infection in mice. Biol Reprod. 2010;83(2):244–53. https://doi.org/10.1095/biolreprod.110.083808.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Johns A, Coons LW. Physiological and pharmacological characteristics of the baboon (Papio anubis) oviduct. Biol Reprod. 1981;25(1):120–7.
CAS
PubMed
CrossRef
Google Scholar
Zasztowt O. [Studies on the bioelectrical phenomena of the cell membrane of the muscle of oviducts]. Ginekol Pol. 1969;40(4):371–6.
Google Scholar
Kishikawa T, Kuriyama H. Electrical and mechanical activities recorded from smooth muscle cells of the human fallopian tube. Jpn J Physiol. 1981;31(3):417–22.
CAS
PubMed
CrossRef
Google Scholar
Lindblom B, Wikland M. Simultaneous recording of electrical and mechanical activity in isolated smooth muscle of the human oviduct. Biol Reprod. 1982;27(2):393–8.
CAS
PubMed
CrossRef
Google Scholar
Parkington HC. Intracellularly recorded electrical activity of smooth muscle of guinea pig oviduct. Am J Physiol. 1983;245(5 Pt 1):C357–64.
CAS
PubMed
CrossRef
Google Scholar
Holman ME. Membrane potentials recorded with high-resistance micro-electrodes; and the effects of changes in ionic environment on the electrical and mechanical activity of the smooth muscle of the taenia coli of the guinea pig. J Physiol. 1958;141(3):464–88.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Talo A, Hodgson BJ. Electrical slow waves in oviductal smooth muscle of the guinea-pig, mouse and the immature baboon. Experientia. 1978;34(2):198–200.
CAS
PubMed
CrossRef
Google Scholar
Bayguinov O, Hennig GW, Sanders KM. Movement based artifacts may contaminate extracellular electrical recordings from GI muscles. Neurogastroenterol Motil. 2011;23(11):1029–42, e1498. https://doi.org/10.1111/j.1365-2982.2011.01784.x.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ozaki H, Stevens RJ, Blondfield DP, Publicover NG, Sanders KM. Simultaneous measurement of membrane potential, cytosolic Ca2+, and tension in intact smooth muscles. Am J Physiol. 1991;260(5 Pt 1):C917–25.
CAS
PubMed
CrossRef
Google Scholar
Forrest AS, Ordog T, Sanders KM. Neural regulation of slow-wave frequency in the murine gastric antrum. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G486–95. https://doi.org/10.1152/ajpgi.00349.2005.
CAS
CrossRef
PubMed
Google Scholar
Hirst GD, Bramich NJ, Teramoto N, Suzuki H, Edwards FR. Regenerative component of slow waves in the guinea-pig gastric antrum involves a delayed increase in [Ca(2+)](i) and Cl(−) channels. J Physiol. 2002;540(Pt 3):907–19.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Burke EP, Gerthoffer WT, Sanders KM, Publicover NG. Wortmannin inhibits contraction without altering electrical activity in canine gastric smooth muscle. Am J Phys. 1996;270(5 Pt 1):C1405–12. https://doi.org/10.1152/ajpcell.1996.270.5.C1405.
CAS
CrossRef
Google Scholar
Sanders KM, Ward SM, Hennig GW. Problems with extracellular recording of electrical activity in gastrointestinal muscle. Nat Rev Gastroenterol Hepatol. 2016;13(12):731–41. https://doi.org/10.1038/nrgastro.2016.161.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Du P, Calder S, Angeli TR, Sathar S, Paskaranandavadivel N, O’Grady G, Cheng LK. Progress in mathematical modeling of gastrointestinal slow wave abnormalities. Front Physiol. 2017;8:1136. https://doi.org/10.3389/fphys.2017.01136.
CrossRef
PubMed
Google Scholar
O’Grady G, Paskaranandavadivel N, Du P, Angeli T, Erickson JC, Cheng LK. Correct techniques for extracellular recordings of electrical activity in gastrointestinal muscle. Nat Rev Gastroenterol Hepatol. 2017;14(6):372. https://doi.org/10.1038/nrgastro.2017.15.
CrossRef
PubMed
Google Scholar
Sanders KM, Ward SM, Hennig GW. Extracellular gastrointestinal electrical recordings: movement not electrophysiology. Nat Rev Gastroenterol Hepatol. 2017;14(6):372. https://doi.org/10.1038/nrgastro.2017.39.
CrossRef
PubMed
Google Scholar
Hodgson BJ, Talo A. Spike bursts in rabbit oviduct. II. Effects of estrogen and progesterone. Am J Physiol. 1978;234(4):E439–43.
CAS
PubMed
Google Scholar
Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9(2):479–523.
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Shafik A, Shafik AA, El Sibai O, Shafik IA. Specialized pacemaking cells in the human Fallopian tube. Mol Hum Reprod. 2005;11(7):503–5.
CAS
PubMed
CrossRef
Google Scholar
Ordog T, Redelman D, Horvath VJ, Miller LJ, Horowitz B, Sanders KM. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A. 2004;62(2):139–49.
PubMed
CrossRef
CAS
Google Scholar
Christensen J. A commentary on the morphological identification of interstitial cells of Cajal in the gut. J Auton Nerv Syst. 1992;37(2):75–88.
CAS
PubMed
CrossRef
Google Scholar
Huizinga JD, Thuneberg L, Vanderwinden JM, Rumessen JJ. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders. Trends Pharmacol Sci. 1997;18(10):393–403.
CAS
PubMed
CrossRef
Google Scholar
Sanders KM. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology. 1996;111(2):492–515.
CAS
PubMed
CrossRef
Google Scholar
Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. c-Kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280(1):97–111.
CAS
PubMed
Google Scholar
Beckett EA, Ro S, Bayguinov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract. Dev Dyn. 2007;236(1):60–72.
CAS
PubMed
CrossRef
Google Scholar
Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S. Requirement of c-kit for development of intestinal pacemaker system. Development. 1992;116(2):369–75.
CAS
PubMed
Google Scholar
Sanders KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 2008;20(Suppl 1):39–53.
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Hashitani H, van Helden DF, Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol. 1996;118(7):1627–32.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kito Y, Fukuta H, Suzuki H. Components of pacemaker potentials recorded from the guinea pig stomach antrum. Pflugers Arch. 2002;445(2):202–17.
CAS
CrossRef
PubMed
Google Scholar
von der Weid PY, Rahman M, Imtiaz MS, van Helden DF. Spontaneous transient depolarizations in lymphatic vessels of the guinea pig mesentery: pharmacology and implication for spontaneous contractility. Am J Physiol Heart Circ Physiol. 2008;295(5):H1989–2000.
PubMed
CrossRef
CAS
Google Scholar
Cobine CA, Hannah EE, Zhu MH, Lyle HE, Rock JR, Sanders KM, Ward SM, Keef KD. ANO1 in intramuscular interstitial cells of Cajal plays a key role in the generation of slow waves and tone in the internal anal sphincter. J Physiol. 2017;595(6):2021–41. https://doi.org/10.1113/JP273618.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM. A Ca(2+)-activated Cl(−) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol. 2009;587(Pt 20):4905–18. https://doi.org/10.1113/jphysiol.2009.176206.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X, Sheppard D, Fahy JV, Wolters PJ, Hogan BL, Finkbeiner WE, Li M, Jan YN, Jan LY, Rock JR. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A. 2012;109(40):16354–9. https://doi.org/10.1073/pnas.1214596109.
CrossRef
PubMed
PubMed Central
Google Scholar
Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM. Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol. 2009;587(Pt 20):4887–904. https://doi.org/10.1113/jphysiol.2009.176198.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hwang SJ, Basma N, Sanders KM, Ward SM. Effects of new-generation inhibitors of the calcium-activated chloride channel anoctamin 1 on slow waves in the gastrointestinal tract. Br J Pharmacol. 2016;173(8):1339–49. https://doi.org/10.1111/bph.13431.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sanders KM, Zhu MH, Britton F, Koh SD, Ward SM. Anoctamins and gastrointestinal smooth muscle excitability. Exp Physiol. 2012;97(2):200–6. https://doi.org/10.1113/expphysiol.2011.058248.
CAS
CrossRef
PubMed
Google Scholar
Singh RD, Gibbons SJ, Saravanaperumal SA, Du P, Hennig GW, Eisenman ST, Mazzone A, Hayashi Y, Cao C, Stoltz GJ, Ordog T, Rock JR, Harfe BD, Szurszewski JH, Farrugia G. Ano1, a Ca2+-activated Cl− channel, coordinates contractility in mouse intestine by Ca2+ transient coordination between interstitial cells of Cajal. J Physiol. 2014;592(18):4051–68. https://doi.org/10.1113/jphysiol.2014.277152.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
El-Sharkawy TY, Daniel EE. Ionic mechanisms of intestinal electrical control activity. Am J Physiol. 1975;229(5):1287–98.
CAS
CrossRef
Google Scholar
El-Sharkawy TY, Szurszewski JH. Modulation of canine antral circular smooth muscle by acetylcholine, noradrenaline and pentagastrin. J Physiol. 1978;279:309–20.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dahms V, Prosser CL, Suzuki N. Two types of ‘slow waves’ in intestinal smooth muscle of cat. J Physiol. 1987;392:51–69.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Huizinga JD, Farraway L, Den Hertog A. Generation of slow-wave-type action potentials in canine colon smooth muscle involves a non-L-type Ca2+ conductance. J Physiol. 1991;442:15–29.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ward SM, Sanders KM. Dependence of electrical slow waves of canine colonic smooth muscle on calcium gradient. J Physiol. 1992;455:307–19.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ward SM, Sanders KM. Upstroke component of electrical slow waves in canine colonic smooth muscle due to nifedipine-resistant calcium current. J Physiol. 1992;455:321–37.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kito Y, Suzuki H. Properties of pacemaker potentials recorded from myenteric interstitial cells of Cajal distributed in the mouse small intestine. J Physiol. 2003;553(Pt 3):803–18.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ward SM, Dixon RE, de Faoite A, Sanders KM. Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum. J Physiol. 2004;561(Pt 3):793–810.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bayguinov O, Ward SM, Kenyon JL, Sanders KM. Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum. Am J Physiol Cell Physiol. 2007;293(5):C1645–59.
CAS
PubMed
CrossRef
Google Scholar
Drumm BT, Hennig GW, Battersby MJ, Cunningham EK, Sung TS, Ward SM, Sanders KM, Baker SA. Clustering of Ca(2+) transients in interstitial cells of Cajal defines slow wave duration. J Gen Physiol. 2017;149(7):703–25. https://doi.org/10.1085/jgp.201711771.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Berridge MJ. Smooth muscle cell calcium activation mechanisms. J Physiol. 2008;586(Pt 21):5047–61.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85. https://doi.org/10.1038/nature04702.
CAS
CrossRef
PubMed
Google Scholar
Prakriya M, Lewis RS. Store-operated calcium channels. Physiol Rev. 2015;95(4):1383–436. https://doi.org/10.1152/physrev.00020.2014.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Putney JWJ. Capacitative calcium entry revisited. Cell Calcium. 1990;11(10):611–24.
CAS
PubMed
CrossRef
Google Scholar
Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361(6410):315–25.
CAS
PubMed
CrossRef
Google Scholar
Dixon R, Hwang S, Britton F, Sanders K, Ward S. Inhibitory effect of caffeine on pacemaker activity in the oviduct is mediated by cAMP-regulated conductances. Br J Pharmacol. 2011;163(4):745–54. https://doi.org/10.1111/j.1476-5381.2011.01266.x.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Johnston L, Sergeant GP, Hollywood MA, Thornbury KD, McHale NG. Calcium oscillations in interstitial cells of the rabbit urethra. J Physiol. 2005;565(Pt 2):449–61.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Aickin CC, Brading AF. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes. J Physiol. 1982;326:139–54.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Greenwood IA, Leblanc N. Overlapping pharmacology of Ca2+-activated Cl− and K+ channels. Trends Pharmacol Sci. 2007;28(1):1–5.
CAS
PubMed
CrossRef
Google Scholar
Ohba M, Sakamoto Y, Tomita T. The slow wave in the circular muscle of the guinea-pig stomach. J Physiol. 1975;253(2):505–16.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Rock JR, Harfe BD. Expression of TMEM16 paralogs during murine embryogenesis. Dev Dyn. 2008;237(9):2566–74.
CAS
PubMed
CrossRef
Google Scholar
Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY. Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A. 2009;106(50):21413–8. https://doi.org/10.1073/pnas.0911935106.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, de Rijn MV, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):G1370–81.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Xiao Q, Yu K, Perez-Cornejo P, Cui Y, Arreola J, Hartzell HC. Voltage- and calcium-dependent gating of TMEM16A/Ano1 chloride channels are physically coupled by the first intracellular loop. Proc Natl Acad Sci U S A. 2011;108(21):8891–6. https://doi.org/10.1073/pnas.1102147108.
CrossRef
PubMed
PubMed Central
Google Scholar
Szurszewski JH. Electrical basis for gastrointestinal motility. In: Johnson LR, editor. Physiology of the gastrointestinal tract. 2nd ed. New York: Raven Press; 1987. p. 1435.
Google Scholar
Diamant NE, Bortoff A. Nature of the intestinal slow-wave frequency gradient. Am J Physiol. 1969;216(2):301–7.
CAS
PubMed
CrossRef
Google Scholar
Szurszewski JH, Elveback LR, Code CF. Configuration and frequency gradient of electric slow wave over canine small bowel. Am J Phys. 1970;218(5):1468–73. https://doi.org/10.1152/ajplegacy.1970.218.5.1468.
CAS
CrossRef
Google Scholar
Siegle ML, Buhner S, Schemann M, Schmid HR, Ehrlein HJ. Propagation velocities and frequencies of contractions along canine small intestine. Am J Physiol. 1990;258(5 Pt 1):G738–44.
CAS
PubMed
Google Scholar
Traurig HH, Papka RE. Autonomic efferent and visceral sensory innervation of the female reproductive system: special reference to the functional roles of nerves in reproductive organs. In: Maggi CA, editor. Nervous control of the urogenital system, The autonomic nervous system, vol. 3. Chur: Harwood Academic Publishers; 1993. p. 103–41.
Google Scholar
Nance DM, Burns J, Klein CM, Burden HW. Afferent fibers in the reproductive system and pelvic viscera of female rats: anterograde tracing and immunocytochemical studies. Brain Res Bull. 1988;21(4):701–9.
CAS
PubMed
CrossRef
Google Scholar
Papka RE, Traurig HH. Autonomic efferent and visceral sensory innervation of the female reproductive tract: special reference to neurochemical markers in nerves and ganglionic connections. In: Maggi CA, editor. Nervous control of the urogenital system, The autonomic nervous system, vol. 3. Chur: Harwood Academic Publishers; 1993. p. 423–66.
Google Scholar
Jankovic SM, Protic BA, Jankovic SV. Contractile effect of acetylcholine on isolated isthmic segment of fallopian tubes. Methods Find Exp Clin Pharmacol. 2004;26(2):87–91.
CAS
PubMed
CrossRef
Google Scholar
Jankovic SM, Protic BA, Jankovic SV. Contractile effect of acetylcholine on isolated ampullar segment of Fallopian tubes. Pharmacol Res. 2004;49(1):31–5.
CAS
PubMed
CrossRef
Google Scholar
Helm GH, Hakanson R, Leander S, Owman C, Sjoberg NO, Sporrong B. Neurogenic relaxation mediated by vasoactive intestinal polypeptide (VIP) in the isthmus of the human fallopian tube. Regul Pept. 1982;3(2):145–53.
CAS
PubMed
CrossRef
Google Scholar
Grozdanovic Z, Mayer B, Baumgarten HG, Bruning G. Nitric oxide synthase-containing nerve fibers and neurons in the genital tract of the female mouse. Cell Tissue Res. 1994;275(2):355–60.
CAS
PubMed
CrossRef
Google Scholar
Ekerhovd E, Brannstrom M, Weijdegard B, Norstrom A. Localization of nitric oxide synthase and effects of nitric oxide donors on the human Fallopian tube. Mol Hum Reprod. 1999;5(11):1040–7.
CAS
PubMed
CrossRef
Google Scholar
Lapointe J, Roy M, St-Pierre I, Kimmins S, Gauvreau D, MacLaren LA, Bilodeau JF. Hormonal and spatial regulation of nitric oxide synthases (NOS) (neuronal NOS, inducible NOS, and endothelial NOS) in the oviducts. Endocrinology. 2006;147(12):5600–10.
CAS
PubMed
CrossRef
Google Scholar
Ortiz ME, Villalon M, Croxatto HB. Ovum transport and fertility following postovulatory treatment with estradiol in rats. Biol Reprod. 1979;21(5):1163–7.
CAS
PubMed
CrossRef
Google Scholar
Rios M, Hermoso M, Sanchez TM, Croxatto HB, Villalon MJ. Effect of oestradiol and progesterone on the instant and directional velocity of microsphere movements in the rat oviduct: gap junctions mediate the kinetic effect of oestradiol. Reprod Fertil Dev. 2007;19(5):634–40.
CAS
PubMed
CrossRef
Google Scholar
Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–8. https://doi.org/10.1056/NEJMra000763.
CAS
CrossRef
PubMed
Google Scholar
Wilcox AJ, Weinberg CR, O’Connor JF, Baird DD, Schlatterer JP, Canfield RE, Armstrong EG, Nisula BC. Incidence of early loss of pregnancy. N Engl J Med. 1988;319(4):189–94. https://doi.org/10.1056/NEJM198807283190401.
CAS
CrossRef
PubMed
Google Scholar
Pisarska MD, Carson SA. Incidence and risk factors for ectopic pregnancy. Clin Obstet Gynecol. 1999;42(1):2–8; quiz 55–56
CAS
PubMed
CrossRef
Google Scholar
From the Centers for Disease Control and Prevention. Ectopic pregnancy—United States, 1990–1992. JAMA. 1995;273(7):533.
CrossRef
Google Scholar
Talbot P, Riveles K. Smoking and reproduction: the oviduct as a target of cigarette smoke. Reprod Biol Endocrinol. 2005;3:52. https://doi.org/10.1186/1477-7827-3-52.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Saraiya M, Berg CJ, Kendrick JS, Strauss LT, Atrash HK, Ahn YW. Cigarette smoking as a risk factor for ectopic pregnancy. Am J Obstet Gynecol. 1998;178(3):493–8.
CAS
PubMed
CrossRef
Google Scholar
Yoshinaga K, Rice C, Krenn J, Pilot RL. Effects of nicotine on early pregnancy in the rat. Biol Reprod. 1979;20(2):294–303.
CAS
PubMed
CrossRef
Google Scholar
Jensen TK, Henriksen TB, Hjollund NH, Scheike T, Kolstad H, Giwercman A, Ernst E, Bonde JP, Skakkebaek NE, Olsen J. Caffeine intake and fecundability: a follow-up study among 430 Danish couples planning their first pregnancy. Reprod Toxicol. 1998;12(3):289–95.
CAS
PubMed
CrossRef
Google Scholar
United Nations Office on Drugs and Crime. World drug report.
Google Scholar
Feng T. Substance abuse in pregnancy. Curr Opin Obstet Gynecol. 1993;5(1):16–23.
CAS
PubMed
CrossRef
Google Scholar
Young-Wolff KC, Tucker LY, Alexeeff S, Armstrong MA, Conway A, Weisner C, Goler N. Trends in self-reported and biochemically tested Marijuana use among pregnant females in California from 2009–2016. JAMA. 2017;318(24):2490–1. https://doi.org/10.1001/jama.2017.17225.
CrossRef
PubMed
PubMed Central
Google Scholar
Maykut MO. Health consequences of acute and chronic marihuana use. Prog Neuropsychopharmacol Biol Psychiatry. 1985;9(3):209–38.
CAS
PubMed
CrossRef
Google Scholar
Mueller BA, Daling JR, Weiss NS, Moore DE. Recreational drug use and the risk of primary infertility. Epidemiology. 1990;1(3):195–200.
CAS
PubMed
CrossRef
Google Scholar
Klonoff-Cohen HS, Natarajan L, Chen RV. A prospective study of the effects of female and male marijuana use on in vitro fertilization (IVF) and gamete intrafallopian transfer (GIFT) outcomes. Am J Obstet Gynecol. 2006;194(2):369–76. https://doi.org/10.1016/j.ajog.2005.08.020.
CAS
CrossRef
PubMed
Google Scholar
Horne AW, Phillips JA 3rd, Kane N, Lourenco PC, McDonald SE, Williams AR, Simon C, Dey SK, Critchley HO. CB1 expression is attenuated in Fallopian tube and decidua of women with ectopic pregnancy. PLoS One. 2008;3(12):e3969. https://doi.org/10.1371/journal.pone.0003969.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Wang H, Guo Y, Wang D, Kingsley PJ, Marnett LJ, Das SK, DuBois RN, Dey SK. Aberrant cannabinoid signaling impairs oviductal transport of embryos. Nat Med. 2004;10(10):1074–80. https://doi.org/10.1038/nm1104.
CAS
CrossRef
PubMed
Google Scholar
Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agro A. Relation between decreased anandamide hydrolase concentrations in human lymphocytes and miscarriage. Lancet. 2000;355(9212):1326–9. https://doi.org/10.1016/S0140-6736(00)02115-2.
CAS
CrossRef
PubMed
Google Scholar
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346(6284):561–4. https://doi.org/10.1038/346561a0.
CAS
CrossRef
PubMed
Google Scholar
Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5. https://doi.org/10.1038/365061a0.
CAS
CrossRef
PubMed
Google Scholar
Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, Suhara Y, Takayama H, Waku K, Seki C, Baba N, Ishima Y. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem. 1999;274(5):2794–801.
CAS
PubMed
CrossRef
Google Scholar
Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215(1):89–97.
CAS
PubMed
CrossRef
Google Scholar
Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.
CAS
PubMed
CrossRef
Google Scholar
Maccarrone M, Finazzi-Agro A. Endocannabinoids and their actions. Vitam Horm. 2002;65:225–55.
CAS
PubMed
CrossRef
Google Scholar
Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–84. https://doi.org/10.1038/nrn1247.
CAS
CrossRef
PubMed
Google Scholar
De Petrocellis L, Cascio MG, Di Marzo V. The endocannabinoid system: a general view and latest additions. Br J Pharmacol. 2004;141(5):765–74. https://doi.org/10.1038/sj.bjp.0705666.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Paria BC, Das SK, Dey SK. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling. Proc Natl Acad Sci U S A. 1995;92(21):9460–4.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Paria BC, Song H, Wang X, Schmid PC, Krebsbach RJ, Schmid HH, Bonner TI, Zimmer A, Dey SK. Dysregulated cannabinoid signaling disrupts uterine receptivity for embryo implantation. J Biol Chem. 2001;276(23):20523–8. https://doi.org/10.1074/jbc.M100679200.
CAS
CrossRef
PubMed
Google Scholar
Schmid PC, Paria BC, Krebsbach RJ, Schmid HH, Dey SK. Changes in anandamide levels in mouse uterus are associated with uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A. 1997;94(8):4188–92.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang H, Matsumoto H, Guo Y, Paria BC, Roberts RL, Dey SK. Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation. Proc Natl Acad Sci U S A. 2003;100(25):14914–9. https://doi.org/10.1073/pnas.2436379100.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003;20(1):1–30. https://doi.org/10.1080/0265203021000007840.
CAS
CrossRef
PubMed
Google Scholar
Stanton CK, Gray RH. Effects of caffeine consumption on delayed conception. Am J Epidemiol. 1995;142(12):1322–9.
CAS
PubMed
CrossRef
Google Scholar
Bolumar F, Olsen J, Rebagliato M, Bisanti L. Caffeine intake and delayed conception: a European multicenter study on infertility and subfecundity. European Study Group on Infertility Subfecundity. Am J Epidemiol. 1997;145(4):324–34.
CAS
PubMed
CrossRef
Google Scholar
Florack EI, Zielhuis GA, Rolland R. Cigarette smoking, alcohol consumption, and caffeine intake and fecundability. Prev Med. 1994;23(2):175–80. https://doi.org/10.1006/pmed.1994.1024.
CAS
CrossRef
PubMed
Google Scholar
Hatch EE, Bracken MB. Association of delayed conception with caffeine consumption. Am J Epidemiol. 1993;138(12):1082–92.
CAS
PubMed
CrossRef
Google Scholar
Parker I, Ivorra I. Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol. 1991;433:229–40.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Butcher RW, Sutherland EW. Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem. 1962;237:1244–50.
CAS
PubMed
Google Scholar
Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995;75(4):725–48.
CAS
PubMed
CrossRef
Google Scholar
Kim M, Cho SY, Han IS, Koh SD, Perrino BA. CaM kinase II and phospholamban contribute to caffeine-induced relaxation of murine gastric fundus smooth muscle. Am J Physiol Cell Physiol. 2005;288(6):C1202–10.
CAS
PubMed
CrossRef
Google Scholar
Kim M, Hennig GW, Smith TK, Perrino BA. Phospholamban knockout increases CaM kinase II activity and intracellular Ca2+ wave activity and alters contractile responses of murine gastric antrum. Am J Physiol Cell Physiol. 2008;294(2):C432–41. https://doi.org/10.1152/ajpcell.00418.2007.
CAS
CrossRef
PubMed
Google Scholar
Nobe K, Sutliff RL, Kranias EG, Paul RJ. Phospholamban regulation of bladder contractility: evidence from gene-altered mouse models. J Physiol. 2001;535(Pt 3):867–78.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Eggermont JA, Vrolix M, Wuytack F, Raeymaekers L, Casteels R. The (Ca2+-Mg2+)-ATPases of the plasma membrane and of the endoplasmic reticulum in smooth muscle cells and their regulation. J Cardiovasc Pharmacol. 1988;12(Suppl 5):S51–5.
CAS
PubMed
CrossRef
Google Scholar
Meera P, Anwer K, Monga M, Oberti C, Stefani E, Toro L, Sanborn BM. Relaxin stimulates myometrial calcium-activated potassium channel activity via protein kinase A. Am J Physiol. 1995;269(2 Pt 1):C312–7.
CAS
PubMed
CrossRef
Google Scholar
Sanborn BM, Yue C, Wang W, Dodge KL. G protein signalling pathways in myometrium: affecting the balance between contraction and relaxation. Rev Reprod. 1998;3(3):196–205.
CAS
PubMed
CrossRef
Google Scholar
Price SA, Bernal AL. Uterine quiescence: the role of cyclic AMP. Exp Physiol. 2001;86(2):265–72.
CAS
PubMed
CrossRef
Google Scholar
Quayle JM, Bonev AD, Brayden JE, Nelson MT. Calcitonin gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth muscle via protein kinase A. J Physiol. 1994;475(1):9–13.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wellman GC, Quayle JM, Standen NB. ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol. 1998;507(Pt 1):117–29.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Quinn KV, Giblin JP, Tinker A. Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP-sensitive K+ channel. Circ Res. 2004;94(10):1359–66.
CAS
PubMed
CrossRef
Google Scholar
Shi Y, Wu Z, Cui N, Shi W, Yang Y, Zhang X, Rojas A, Ha BT, Jiang C. PKA phosphorylation of SUR2B subunit underscores vascular KATP channel activation by beta-adrenergic receptors. Am J Physiol Regul Integr Comp Physiol. 2007;293(3):R1205–14.
CAS
PubMed
CrossRef
Google Scholar
Shi Y, Chen X, Wu Z, Shi W, Yang Y, Cui N, Jiang C, Harrison RW. cAMP-dependent protein kinase phosphorylation produces interdomain movement in SUR2B leading to activation of the vascular KATP channel. J Biol Chem. 2008;283(12):7523–30.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Burg AW. Physiological disposition of caffeine. Drug Metab Rev. 1975;4(2):199–228. https://doi.org/10.3109/03602537508993756.
CAS
CrossRef
PubMed
Google Scholar
White JR Jr, Padowski JM, Zhong Y, Chen G, Luo S, Lazarus P, Layton ME, McPherson S. Pharmacokinetic analysis and comparison of caffeine administered rapidly or slowly in coffee chilled or hot versus chilled energy drink in healthy young adults. Clin Toxicol (Phila). 2016;54(4):308–12. https://doi.org/10.3109/15563650.2016.1146740.
CrossRef
Google Scholar
Adderley-Kelly B, Stephens EM. Chlamydia: a major health threat to adolescents and young adults. ABNF J. 2005;16(3):52–5.
PubMed
Google Scholar
Stamm WE. Chlamydia screening: expanding the scope. Ann Intern Med. 2004;141(7):570–2.
PubMed
CrossRef
Google Scholar
World Health Organization. Global prevalence and incidence of selected curable sexually transmitted infections overview and estimates. Geneva: WHO; 2001.
Google Scholar
Entrican G, Wattegedera S, Rocchi M, Fleming DC, Kelly RW, Wathne G, Magdalenic V, Howie SE. Induction of inflammatory host immune responses by organisms belonging to the genera Chlamydia/Chlamydophila. Vet Immunol Immunopathol. 2004;100(3–4):179–86.
CAS
PubMed
CrossRef
Google Scholar
World Health Organization. Global strategy for the prevention and control of sexually transmitted infections: 2006–2015: breaking the chain of transmission. Geneva: WHO; 2007.
Google Scholar
Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K, Bass S, Linher K, Weidman J, Khouri H, Craven B, Bowman C, Dodson R, Gwinn M, Nelson W, DeBoy R, Kolonay J, McClarty G, Salzberg SL, Eisen J, Fraser CM. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 2000;28(6):1397–406.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149–61.
CAS
PubMed
CrossRef
Google Scholar
Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG, Inouye S, Ramsey KH. Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex Transm Dis. 2005;32(1):49–56.
PubMed
CrossRef
Google Scholar
Eskandari MK, Kalff JC, Billiar TR, Lee KK, Bauer AJ. LPS-induced muscularis macrophage nitric oxide suppresses rat jejunal circular muscle activity. Am J Physiol. 1999;277(2 Pt 1):G478–86.
CAS
PubMed
Google Scholar
Kalff JC, Schraut WH, Billiar TR, Simmons RL, Bauer AJ. Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents. Gastroenterology. 2000;118(2):316–27.
CAS
PubMed
CrossRef
Google Scholar
Yanagida H, Sanders KM, Ward SM. Inactivation of inducible nitric oxide synthase protects intestinal pacemaker cells from postoperative damage. J Physiol. 2007;582(Pt 2):755–65.
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Xin HB, Deng KY, Rishniw M, Ji G, Kotlikoff MI. Smooth muscle expression of Cre recombinase and eGFP in transgenic mice. Physiol Genomics. 2002;10(3):211–5.
CAS
PubMed
CrossRef
Google Scholar