Skip to main content

Thin-Wire Perfectly Conducting Loops and Rings

  • Chapter
  • First Online:
The Analytical Foundations of Loop Antennas and Nano-Scaled Rings

Part of the book series: Signals and Communication Technology ((SCT))

  • 458 Accesses

Abstract

This chapter covers the analytical theory of thin-wire, perfectly conducting loop antennas and nano-scaled rings. It relies on the thin-wire approximation and assumes no energy loss in the material. The chapter covers the early history of the development of the theory and points out the difficulties and how they were handled. The governing equations that need to be solved and Storer’s 1956 solution for the Fourier coefficients are shown. Difficulties with the derivation are indicated and Wu’s 1962 fix is examined. A new elliptical solution that has not appeared in the literature to date is then derived and yields a result similar to Storer’s. The difficulties Storer and Wu encountered with regard to the convergence of the Fourier series are described. Wu’s solution solves the convergence problem. Much of the problem involves the non-solvability of the governing equation when certain mathematical models of the driving generator are used. These difficulties are summarised. The Storer and Wu solutions are summarised with the elliptical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A b is added to make \(K_n\) unitless, as it is in Storer and Wu. Wu rectified Storer’s treatment with respect to the units and we follow him.

  2. 2.

    See Appendix A. Storer and Wu both used the Janke-Emde [17] definition where \((x\mathtt {sin}\theta -m\theta )\) is used. This gives rise to a sign difference for \(\varvec{\Omega }_n(z)\) with the standard definition.

  3. 3.

    See Sect. 3.5 for the expansion.

  4. 4.

    It is useful to remember that the sign difference on \(\varvec{\Omega }_{2n}(x)\) is due to a difference in its definition as used by Storer and Wu. See Sect. 3.3.1.

  5. 5.

    This is true, except for a sign change on the second term of \(\hat{\phi }\) in Eq. (3.83) compared with his Eq. (12). This appears to be due to Kanda’s coordinate system twisted by \(180^{\circ }\) compared with Eq. (2.142). In that case, our \(\gamma \) is \(\pi \) radians out of phase with his. Kanda also has an extra phase factor of \(e^{-jn\phi _p}\), which is unnecessary here since \(\phi _p\) is assimilated into \(\alpha \).

  6. 6.

    Much more detail about convergence of these equations appears in a series of articles by Fikioris et al. specifically [9, 10, 13, 14, 22].

References

  1. C.W. Oseen, Ark. Mat. Astr. Fys. 9, 1 (1913)

    Google Scholar 

  2. E. Hallen, Nova Actae Regiae Soc. Sci. Ups. Ser. IV 11(4), 1 (1938)

    Google Scholar 

  3. J.E. Storer, Trans. AIEE 75, 606 (1956)

    Google Scholar 

  4. T.T. Wu, J. Math. Phys. 3(6), 1301 (1962)

    Article  Google Scholar 

  5. R.W.P. King, in Antenna Theory, part 1, Inter-University Electronic Series, vol. 7, ed. by R.E. Collin, F.J. Zucker, 1st edn. (McGraw-Hill, New York, 1969), Chap. 11, pp. 458–482

    Google Scholar 

  6. A.F. McKinley, T.P. White, K.R. Catchpole, J. Appl. Phys. 114(4), 044317 (2013). https://doi.org/10.1063/1.4816619, http://scitation.aip.org/content/aip/journal/jap/114/4/10.1063/1.4816619

  7. T. Wu, R.W.P. King, J. Appl. Phys. 30, 76 (1959)

    Article  Google Scholar 

  8. T.T. Wu, in Antenna Theory Part 1, ed. by R.E. Collin, F.J. Zucker (McGraw-Hill, 1969), Chap. 8, pp. 306–351

    Google Scholar 

  9. G. Fikioris, T.T. Wu, I.E.E.E. Trans, Antennas Propag. 49(3), 383 (2001)

    Article  Google Scholar 

  10. G. Fikioris, J. Lionas, C. Lioutas, IEEE Trans, Antennas Propag. 51(8), 1847 (2003). https://doi.org/10.1109/TAP.2003.815412

  11. H. Anastassiu, I.E.E.E. Trans, Antennas Propag. 54(3), 860 (2006). https://doi.org/10.1109/TAP.2006.869929

    Article  Google Scholar 

  12. P.J. Papakanellos, G. Fikioris, Prog. Electromagn. Res. 69, 77 (2007)

    Article  Google Scholar 

  13. G. Fikioris, P. Papakanellos, H. Anastassiu, IEEE Trans, Antennas Propag. 56(1), 151 (2008). https://doi.org/10.1109/TAP.2007.913076

  14. P. Papakanellos, G. Fikioris, A. Michalopoulou, IEEE Trans, Antennas Propag. 58(5), 1635 (2010). https://doi.org/10.1109/TAP.2010.2044319

  15. G. Fikioris, P.J. Papakanellos, T.K. Mavrogordatos, N. Lafkas, D. Koulikas, SIAM, J. Appl. Math. 71(2), 559 (2011). https://doi.org/10.1137/100785727

  16. I. Tastsoglou, G. Fikioris, I.E.E.E. Trans, Antennas Propag. 61(11), 5517 (2013). https://doi.org/10.1109/TAP.2013.2279423

    Article  Google Scholar 

  17. E. Janke, F. Emde, F. Loesch, Tafeln Hoherer Funktionen (B. G. Verlagsgesellschaft, Stuttgart, 6th edition, 1960)

    Google Scholar 

  18. I. Stegun, M. Abramowitz, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Applied Mathematics Series 55 (US. Government Printing Office, WDC, 1964)

    Google Scholar 

  19. G.N. Watson, Theory of Bessel Functions (The MacMillan Company, New York, 1945)

    Google Scholar 

  20. T. Do-Nhat, R.H. Macphie, IEEE Trans, Antennas Propag. 37(12), 1545 (1989). https://doi.org/10.1109/8.45096

  21. I. Tastsoglou, G. Fikioris, IEEE Trans, Antennas Propag. 61(11), 5527 (2013). https://doi.org/10.1109/TAP.2013.2279426

  22. G. Fikioris, P. Papakanellos, H. Anastassiu, IEEE Trans, Antennas Propag. 58(10), 3436 (2010). https://doi.org/10.1109/TAP.2010.2055816

  23. M. Kanda, IEEE Trans. Electromagn. Compat. EMC-26(3), 102 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold McKinley .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McKinley, A. (2019). Thin-Wire Perfectly Conducting Loops and Rings. In: The Analytical Foundations of Loop Antennas and Nano-Scaled Rings. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-5893-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5893-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5891-3

  • Online ISBN: 978-981-13-5893-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics