Skip to main content

Antioxidative Response of Water Macrophytes to Changes in the Living Environment During Vegetation Season: An Experimental Study

  • Chapter
  • First Online:
Environmental Concerns and Sustainable Development

Abstract

The study investigated the changes in the antioxidative metabolism of the aquatic macrophytes (Phragmites communis Trin., Utricularia vulgaris L. and Salvinia natans (L.) All.) in the area of the Bardača ponds in order to determine the response of plants to different conditions in the living environment during one growing period (May–October). The studies included physicochemical analysis of water and determination of the activity of peroxidase, polyphenol oxidase, ascorbate peroxidase and catalase in the leaves of Phragmites communis Trin., Utricularia vulgaris L. and Salvinia natans (L.) All. The obtained results showed increased activity of peroxidase, catalase and polyphenol oxidase and decreased activity of ascorbate peroxidase with senescence in all three plant species. Changes in enzyme activity during the season did not show the same trend and varied significantly in relation to the investigated species. Also, it is important to emphasize that the investigations of antioxidative metabolism of selected plant species are among the first to be made in natural conditions and showed that the aquatic macrophytes represent good bioindicators of the aquatic habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Agraval SB, Mishra S (2009) Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicol Environ Saf 72(2):610–618

    Article  Google Scholar 

  • Alfadul SMS, Al-Fredan MAA (2013) Effects of Cd, Cu, Pb, and Zn combinations on Phragmites australis metabolism, metal accumulation and distribution. Arab J Sci Eng 38(1):11–19

    Article  CAS  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros-Barceló A, Pedernõ MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60(2):377–390

    Article  CAS  Google Scholar 

  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Mohamed AA, Thangavel P, Devi GD, Vasudhevan P, Sofo A, Khan NA, Misra AN, Lukatkin AS, Singh HP, Pereira E, Tuteja N (2016) Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res Int 23(19):19002–19029

    Article  CAS  Google Scholar 

  • Antonielli M, Pasqualini S, Batini P, Edreli L, Massacci A, Loreto F (2002) Physiological and anatomical characterisation of Phragmites australis leaves. Aquat Bot 72(1):55–66

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Balcerek M, Rak I, Majtkowska G, Majtkowski W (2009) Antioxidant activity and total phenolic compounds in extracts of selected grasses (Poaceae). Herba Pol 55(3):214–221

    Google Scholar 

  • Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14

    Article  CAS  Google Scholar 

  • Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35(4):1011–1019

    Article  CAS  Google Scholar 

  • Cevahir G, Yentür S, Yazgan M, Ünal M, Yilmazer N (2004) Peroxidase activity in relation to anthocyanin and chlorophyll content in juvenile and adult leaves of “Mini Star” Gazania splendens. Pak J Bot 36(3):603–609

    Google Scholar 

  • Chalanika De Silva HC, Asaeda T (2017) Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J Plant Interact 12:228–236

    Article  Google Scholar 

  • Cipollini DF Jr (1997) Wind-induced mechanical stimulation increases pest resistance in common bean. Oecologia 111(1):84–90

    Article  Google Scholar 

  • Constabel CP, Barbehenn R (2008) Defensive roles of polyphenol oxidase in plants. In: Schaller A (ed) Induced plants resistance to herbivory. Springer, Dordrecht, pp 253–270

    Chapter  Google Scholar 

  • Dabrowska G, Kata A, Goc A, Szechyńska-Hebda M, Skrzypek E (2007) Characteristics of the plant ascorbate peroxidase family. Acta Biol Cracov Ser Bot 49(1):7–17

    Google Scholar 

  • Dar NA, Pandit AK, Ganai BA (2014) Factors affecting the distribution patterns of aquatic macrophytes. Limnol Rev 14(2):75–81

    Article  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097

    Article  CAS  Google Scholar 

  • Dorantes AR, Zúñiga AG (2012) Phenoloxidases activity in root system and their importance in the phytoremediation of organic contaminants. J Environ Chem Ecotoxicol 4(3):35–40

    Google Scholar 

  • Dragišić-Maksimović J, Maksimović V, Živanović B, Hadži-Tašković Š, Vuletić M (2008) Peroxidase activity and phenolic compounds content in maize root and leaf apoplast, and their association with growth. Plant Sci 175(5):656–662

    Article  Google Scholar 

  • Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase – like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99

    Article  Google Scholar 

  • Đurđević L (2000) Content of phenolic acids and total phenolics in several aquatic plant species. Arch Biol Sci 52(2):97–101

    Google Scholar 

  • Đurić D, Sopić D, Trifković A, Jandrić B (2004) Hidrotehnički radovi u području močvare Bardača. In: Šarić Ž, Stanković M, Butler D (eds) Život u močvari. Urbanistički zavod Republike Srpske, a.d, Banja Luka, pp 17–27

    Google Scholar 

  • Ellawala C, Asaeda T, Kawamura K (2011) Influence of flow turbulence on growth and indole acetic acid and H2O2 metabolism of three aquatic macrophyte species. Aquat Ecol 45(3):417–426

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Review article. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gong C-M, Bai J, Deng J-M, Wang G-X, Liu X-P (2011) Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability. Plant Ecol 212:675–685

    Article  Google Scholar 

  • Hanfeng X, Qiling T, Chengxiao H (2010) Structural and metabolic responses of Ceratophyllum demersum eutrophic conditions. Afr J Biotechnol 9(35):5722–5729

    Google Scholar 

  • Haque MS, Islam MM, Islam MA, Khan MMH, Amin MZ (2014) Assessment of polyphenol oxidase and peroxidase activity in root of Basella Alba induced by high temperature stress. J Pharm Bioallied Sci 9(5):105–114

    Google Scholar 

  • Herb WR, Stefan HG (2006) Seasonal growth of submersed macrophytes in lakes: the effects of biomass density and light competition. Ecol Model 193(3–4):560–574

    Article  Google Scholar 

  • Hilt S, Gross EM (2008) Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic Appl Ecol 9:422–432

    Article  Google Scholar 

  • Ionită E (2013) Plant polyphenol oxidases: isolation and characterization. Innov Rom Food Biotechnol 13:1–10

    Google Scholar 

  • Jana S, Choundri A (1980) Senescence in submerged aquatic angiosperms: changes in intact and isolated leaves during aging. New Phytol 86(2):191–198

    Article  CAS  Google Scholar 

  • Johnson CE, Oladeinde FO, Kinyua AM, Michelin R, Makinde JM, Jaiyesimi AA, Mbiti WN, Kamau GN, Kofi-Tsekpo WM, Pramanik S, Williams A, Kennedy A, Bronner Y, Clarker K, Fofonoff P, Nemerson D (2008) Comparative assessment of total phenolic content in selected medicinal plants. Niger J Nat Prod Med 12:40

    CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol 57(2):315–319

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Moon JC, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Krischik VA, Newman RM, Kyhl JF (1997) Managing aquatic plants in Minnesota LAKES. University of Minnesota, St. Paul

    Google Scholar 

  • Kukavica B, Mitrović A, Mojović M, Veljović-Jovanović S (2007) Effect of indol-3-acetid acid on pea root growth, peroxidase profiles and hydroxyl radical formation. Arch Biol Sci 59(4):319–326

    Article  Google Scholar 

  • Kumar D, Singh DP, Barman SC, Kumar N (2016) Heavy metal and their regulation in plant system: an overview. In: Singh et al (eds) Plant responses to xenobiotics. Springer, Singapore, pp 19–38

    Chapter  Google Scholar 

  • Kumar D, Kumar S, Shukla V, Kumar N (2017) Adaptation strategies of plants against common inorganic pollutants and metals. In: Shukla et al (eds) Plant adaptation strategies in changing environment. Springer Nature, Singapore, pp 315–328

    Chapter  Google Scholar 

  • Kumar D, Kumar S, Kumar N (2018) Common weeds as potential tools for in situ phytoremediation and eco- restoration of industrially polluted site. In: Chandra et al (eds) Phytoremediation of environmental pollutants. CRC Press Taylor & Francis Group, Boca Raton, pp 271–284

    Google Scholar 

  • Lattanzio V, Cardinali A, Linslata V (2012) Plant phenolics: a biochemical and physiological perspective. In: Cheynier V, Sarni-Manchado P, Quideau S (eds) Recent advances in polyphenol research. Wiley-Blackwell, Oxford, pp 1–39

    Google Scholar 

  • Lee B-R, Kim K-Y, Jung W-J, Avice J-C, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58:1271–1279

    Article  CAS  Google Scholar 

  • Leu E, Krieger-Liszky A, Goussias C, Gross EM (2002) Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Plant Physiol 130(4):2011–2018

    Article  CAS  Google Scholar 

  • Lizieri C, Kuki KN, Aguiar R (2012) The morphophysiological responses of free-floating aquatic macrophytes to a supra-optimal supply of manganese. Water Air Soil Pollut 223(5):2807–2820

    Article  CAS  Google Scholar 

  • Lukina LF, Smirnova NN (1988) Fiziologija viših vodnih rastenii. Naukova dumka, Kiev

    Google Scholar 

  • Map of Bardača fishpond (a detail from topographic map 1:25000, Nova Gradiška (Razboj-Ljevčanski) 4–4, Vojnogeografski institut, 1977 (Military Geographic Institute)

    Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158(12):3447–3461

    Article  CAS  Google Scholar 

  • Meikap MB, Rot DGK (1997) Removal of phenolic compounds from industrial waste water by semifluidized bed Bio-Reactor. J IPHE, India 3:54–61

    Google Scholar 

  • Michalak A (2005) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    Google Scholar 

  • Minibayeva F, Beckett RP, Kranner I (2015) Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry 112:122–129

    Article  CAS  Google Scholar 

  • Mittler (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mittler R, Poulos TL (2005) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 87–100

    Google Scholar 

  • Myriam K, Houria B, Rachid R, Reda DM (2009) Biochemical changes observed in isolated roots of Phragmites australis treated with industrial wastewater. Am Eurasian J Toxicol Sci 1(1):19–23

    Google Scholar 

  • Nacano Y, Asada K (1981) Ascorbate peroxidase assay. In: Sekmen AH, Turkan I (eds) Protocols in ecological and environmental plant physiology. PrometheusWiki

    Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24(5):255–265

    Article  CAS  Google Scholar 

  • Prasad MNV, Greger M, Aravind P (2006) Biogeochemical cycling of trace elements by aquatic and wetland plants: relevance to phytoremediation. In: Prasad MNV, Sajvan KS, Naidu R (eds) Trace elements in the environment, biogeochemistry, biotechnology, and bioremediation. CRC, Taylor and Francis Group, LLC, Boca Raton, pp 483–507

    Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39(9):697–753

    Article  CAS  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  CAS  Google Scholar 

  • Sánchez M, Revilla G, Zarra I (1995) Changes in peroxidase activity associated with cell walls during pine hypocotyl grow. Ann Bot 75(4):415–419

    Article  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, del Río LA, Romero-Puertas MC (2009) Reactive oxygen species and signaling in cadmium toxicity. In: Rio LA, Puppo A (eds) Signaling and communication in plants. Springer, Berlin/Heidelberg, pp 175–189

    Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalases in plants: gen structure, properties, regulation and expression. Cold Spring Harb Monogr Ser 34:343–406

    CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phoshotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Smolders AJP, Lamers LPM, Lucassen ECHET, Van Der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it—a review. Chem Ecol 22:93–111

    Article  CAS  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2005) Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes. Funct Plant Biol 32(1):45–53

    Article  CAS  Google Scholar 

  • Sofo A, Scopa A, Nuzzaci M, Vitti A (2015) Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. Int J Mol Sci 16(6):13561–13578

    Article  CAS  Google Scholar 

  • Song L, Jiang Y, Zhao H, Zhang Z (2012) Comparative study on calli from two reed ecotypes under heat stress. Russ J Plant Physiol 59(3):381–388

    Article  CAS  Google Scholar 

  • Spencer DF, Rejmánek M (2010) Competition between two submersed aquatic macrophytes, Potamogeton pectinatus and Potamogeton gramineus, across a light gradient. Aquat Bot 92(4):239–244

    Article  Google Scholar 

  • Sprechner SL, Stewart AB, Brazil JM (1993) Peroxidase changes as indicators of herbicide-induced stress in aquatic plants. J Aquat Plant Manag 31:45–50

    Google Scholar 

  • Stevanović M, Janković MM (2001) Ekologija biljaka sa osnovama fiziološke ekologije biljaka. Beograd, pp 87–193, 261–275

    Google Scholar 

  • Strack D (1997) Phenolic metabolism. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic, New York, pp 387–437

    Chapter  Google Scholar 

  • Szczepanska W, Szczepanski A (1973) Emergent macrophytes and their role in wetland ecosystem. Pol Arch Hydrobiol 20:41–50

    CAS  Google Scholar 

  • Takahama U (2004) Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem Rev 3(1–2):207–219

    Article  CAS  Google Scholar 

  • Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153(1):65–72

    Article  CAS  Google Scholar 

  • Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167(4):693–703

    Article  CAS  Google Scholar 

  • Thipyapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12(8):1569–1595

    Article  CAS  Google Scholar 

  • Vaugh KC, Duke SO (1984) Function of polyphenol oxidase in higher plants. Physiol Plant 60:106–112

    Article  Google Scholar 

  • Veljović-Jovanović S (1998) Active oxygen species and photosynthesis: Mehler and ascorbate peroxidase reactions. Review article. Iugosl Physiol Pharmacol Acta 34(2):503–522

    Google Scholar 

  • Veljović-Jovanović S, Kukavica B, Navari-Izzo F (2008) Characterization of polyphenoloxidase changes induced by desiccation of Ramonda serbica leaves. Physiol Plant 132:407–416

    Article  Google Scholar 

  • Veljović-Jovanović S, Kukavica B, Vidović M, Morina F, Menckhoff L (2018) Class III peroxidases: functions, localization and redox regulation of isoenzymes. In: Gupta D, Palma J, Corpas F (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 269–300

    Chapter  Google Scholar 

  • Xiang J, Jiang AN, Fang YP, Huang LB, Zhang H (2012) Effects of soil water gradient on stress-resistant enzyme activities in Phragmites australis from Yellow River Delta. Procedia Environ Sci 13:2464–2468

    Article  CAS  Google Scholar 

  • Zaman T, Asaeda T (2013) Effects of NH4–N concentrations and gradient redox level on growth and allied biochemical parameters of Elodea nuttallii (Planch.). Flora: Morphol Distrib Func Ecol Plants 208:211–219

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Foundation “Dr Milan Jelic” within the Ministry of Science and Technology of the Republic of Serbia (grant number 01-2-473-1/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Maksimović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maksimović, T., Hasanagić, D., Kukavica, B. (2020). Antioxidative Response of Water Macrophytes to Changes in the Living Environment During Vegetation Season: An Experimental Study. In: Shukla, V., Kumar, N. (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-5889-0_6

Download citation

Publish with us

Policies and ethics