Skip to main content

Optimization of Multi-Antenna Wireless Networks

  • Chapter
  • First Online:
Stochastic Geometry Analysis of Multi-Antenna Wireless Networks
  • 624 Accesses

Abstract

This chapter presents two applications of the general analytical framework on network design and optimization. The first application considers interference coordination. A tractable expression is first derived for the coverage probability of a user-centric interference nulling strategy, which then helps to effectively optimize the interference coordination range. The presented interference nulling strategy can achieve performance gains about 35–40% compared with the non-coordination case. The second application studies general multiuser MIMO heterogeneous networks (HetNets). Exact and asymptotic expressions of the coverage probabilities are presented, which reveal that the SIR invariance property of SISO HetNets does not hold for MIMO HetNets. Instead, the coverage probability may decrease as the network density increases. It is proved that the maximum coverage probability is achieved by activating only one tier of BSs, while the maximum ASE is achieved by activating all the BSs. This reveals a unique trade-off between the ASE and link reliability in multiuser MIMO HetNets. To achieve the maximum ASE while guaranteeing a certain link reliability, efficient algorithms are provided to find the optimal BS densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Chap. 3, the shape parameter of the gamma distribution was denoted by M. Nevertheless, with a slight abuse of notation, we use \(N_\mathrm {t}-M\) to denote the number of users that are helped by the home BS to null interference. Later we shall see that these parameters are closely related to each other.

  2. 2.

    The optimal N of the number-based ICIN and the optimal cluster size for random BS clustering can only be obtained via simulation as no analytical expression of \(p_\mathrm{c}\) is available for these two cases.

  3. 3.

    Note that many previous works such as focused on the case \(p_\mathrm{a}=1\), which could not capture the effect of the user distribution.

  4. 4.

    This conclusion depends on the actual transmission strategy, and a full comparison of colocated and distributed antenna deployment is left to future work.

  5. 5.

    Note that the analysis also applies to single-user MIMO, where each user in the k-th tier has \(U_k\) uncorrelated receive antennas, and BSs in the k-th tier apply equal power allocation to the \(U_k\) streams. Then the coverage probability to the typical user analyzed in this section becomes the coverage probability per stream.

  6. 6.

    In the user association procedure, the first antenna normally uses the total transmission power of a BS to transmit reference signals for biased received power determination according to the LTE standard [27].

  7. 7.

    In this subsection, we use \(\left\{ \lambda _k\right\} \) to denote the set \(\left\{ \lambda _k:k\in \mathscr {K}\right\} \), representing the BS densities of all the tiers, while \(\lambda _k\) is used to denote the BS density of the k-th tier.

References

  1. J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59, 3122–3134 (2011)

    Article  Google Scholar 

  2. D. Gesbert, S. Hanly, H. Huang, S.S. Shitz, O. Simeone, W. Yu, Multi-cell MIMO cooperative networks: a new look at interference. IEEE J. Sel. Areas Commun. 28, 1380–1408 (2010)

    Article  Google Scholar 

  3. J. Zhang, R. Chen, J.G. Andrews, A. Ghosh, R.W. Heath Jr., Networked MIMO with clustered linear precoding. IEEE Trans. Wirel. Commun. 8, 1910–1921 (2009)

    Article  Google Scholar 

  4. D. López-Pérez, I. Guvenc, G. de la Roche, M. Kountouris, T.Q.S. Quek, J. Zhang, Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wirel. Commun. 18, 22–30 (2011)

    Article  Google Scholar 

  5. G.J. Foschini, K. Karakayali, R.A. Valenzuela, Coordinating multiple antenna cellular networks to achieve enormous spectral efficiency. IEE Proc. Commun. 153, 548–555 (2006)

    Google Scholar 

  6. H. Huh, A.M. Tulino, G. Caire, Network MIMO with linear zero-forcing beamforming: large system analysis, impact of channel estimation, and reduced-complexity scheduling. IEEE Trans. Inf. Theory 58, 2911–2934 (2012)

    Article  MathSciNet  Google Scholar 

  7. E. Björnson, E. Jorswieck, Optimal resource allocation in coordinated multi-cell systems. Found. Trends Commun. Inf. Theory 9, 113–381 (2013)

    Article  Google Scholar 

  8. J. Zhang, J.G. Andrews, Adaptive spatial intercell interference cancellation in multicell wireless networks. IEEE J. Sele. Areas Commun. 28, 1455–1468 (2010)

    Article  Google Scholar 

  9. R. Bhagavatula, R.W. Heath Jr., Adaptive bit partitioning for multicell intercell interference nulling with delayed limited feedback. IEEE Trans. Signal Process. 59, 3824–3836 (2011)

    Article  MathSciNet  Google Scholar 

  10. S. Akoum, R.W. Heath Jr., Interference coordination: random clustering and adaptive limited feedback. IEEE Trans. Signal Process. 61, 1822–1834 (2013)

    Article  MathSciNet  Google Scholar 

  11. K. Huang, J.G. Andrews, An analytical framework for multicell cooperation via stochastic geometry and large deviations. IEEE Trans. Inf. Theory 59, 2501–2516 (2013)

    Article  MathSciNet  Google Scholar 

  12. R. Tanbourgi, S. Singh, J.G. Andrews, F.K. Jondral, A tractable model for noncoherent joint-transmission base station cooperation. IEEE Trans. Wirel. Commun. 13, 4959–4973 (2014)

    Article  Google Scholar 

  13. G. Nigam, P. Minero, M. Haenggi, Coordinated multipoint joint transmission in heterogeneous networks. IEEE Trans. Commun. 62, 4134–4146 (2014)

    Article  Google Scholar 

  14. X. Zhang, M. Haenggi, A stochastic geometry analysis of inter-cell interference coordination and intra-cell diversity. IEEE Trans. Wirel. Commun. 13, 6655–6669 (2014)

    Article  Google Scholar 

  15. P. Xia, C. Liu, J.G. Andrews, Downlink coordinated multi-point with overhead modeling in heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 12, 4025–4037 (2013)

    Article  Google Scholar 

  16. C. Li, J. Zhang, M. Haenggi, K.B. Letaief, User-centric intercell interference nulling for downlink small cell networks. IEEE Trans. Commun. 63, 1419–1431 (2015)

    Article  Google Scholar 

  17. N. Jindal, J.G. Andrews, S. Weber, Multi-antenna communication in ad hoc networks: achieving MIMO gains with SIMO transmission. IEEE Trans. Commun. 59, 529–540 (2011)

    Article  Google Scholar 

  18. S.M. Yu, S. Kim, Downlink capacity and base station density in cellular networks, in IEEE International Symposium on WiOpt (May 2013), pp. 119–124

    Google Scholar 

  19. D.J. Love, R.W. Heath Jr., V.K.N. Lau, D. Gesbert, B.D. Rao, M. Andrews, An overview of limited feedback in wireless communication systems. IEEE J. Sel. Areas Commun. 26, 1341–1365 (2008)

    Article  Google Scholar 

  20. N. Jindal, MIMO broadcast channels with finite-rate feedback. IEEE Trans. Inf. Theory 52, 5045–5060 (2006)

    Article  MathSciNet  Google Scholar 

  21. I. Hwang, B. Song, S.S. Soliman, A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 51, 20–27 (2013)

    Article  Google Scholar 

  22. A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky, T.A. Thomas, J.G. Andrews, P. Xia, H.S. Jo, H.S. Dhillon, T.D. Novlan, Heterogeneous cellular networks: from theory to practice. IEEE Commun. Mag. 50, 54–64 (2012)

    Article  Google Scholar 

  23. G. Bartoli, R. Fantacci, K.B. Letaief, D. Marabissi, N. Privitera, M. Pucci, J. Zhang, Beamforming for small cell deployment in LTE-advanced and beyond. IEEE Wirel. Commun. 21, 50–56 (2014)

    Article  Google Scholar 

  24. S. Singh, H.S. Dhillon, J.G. Andrews, Offloading in heterogeneous networks: modeling, analysis, and design insights. IEEE Trans. Wirel. Commun. 12, 2484–2497 (2013)

    Article  Google Scholar 

  25. C. Li, J. Zhang, J.G. Andrews, K.B. Letaief, Success probability and area spectral efficiency in multiuser MIMO HetNets. IEEE Trans. Commun. 64, 1544–1556 (2016)

    Article  Google Scholar 

  26. H.S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun. 11, 3484–3495 (2012)

    Article  Google Scholar 

  27. A. Ghosh, J. Zhang, J.G. Andrews, R. Muhamed, Fundamentals of LTE (Pearson Education, 2010)

    Google Scholar 

  28. H.S. Dhillon, M. Kountouris, J.G. Andrews, Downlink MIMO HetNets: modeling, ordering results and performance analysis. IEEE Trans. Wirel. Commun. 12, 5208–5222 (2013)

    Article  Google Scholar 

  29. V. Chandrasekhar, M. Kountouris, J.G. Andrews, Coverage in multi-antenna two-tier networks. IEEE Trans. Wirel. Commun. 8, 5314–5327 (2009)

    Article  Google Scholar 

  30. M. Kountouris, J.G. Andrews, Downlink SDMA with limited feedback in interference-limited wireless networks. IEEE Trans. Wirel. Commun. 11, 2730–2741 (2012)

    Google Scholar 

  31. K. Hosseini, W. Yu, R.S. Adve, Large-scale MIMO versus network MIMO for multicell interference mitigation. IEEE J. Sel. Topics Signal Process. 8, 930–941 (2014)

    Article  Google Scholar 

  32. H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of \(K\)-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30, 550–560 (2012)

    Article  Google Scholar 

  33. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge U.K., 2004)

    Google Scholar 

  34. G. Auer, V. Giannini, C. Desset, I. Godor, P. Skillermark, M. Olsson, M.A. Imran, D. Sabella, M.J. Gonzalez, O. Blume, A. Fehske, How much energy is needed to run a wireless network? IEEE Wirel. Commun. 18, 40–49 (2011)

    Article  Google Scholar 

  35. W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  36. F. Facchinei, S. Sagratella, G. Scutari, Flexible parallel algorithms for big data optimization, in IEEE International Conference on Acoustics, Speech, and Signal Process. (ICASSP) (May 2014), pp. 7208–7212

    Google Scholar 

  37. M. Haenggi, Stochastic Geometry for Wireless Networks (Cambridge University Press, Cambridge, U.K., 2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Lemma 5.1

Since \(\varPsi _u^{\left( 1\right) }\) is an inhomogeneous PPP with density \(\lambda _{u}^{\left( 1\right) }\left( y\right) =\)\(\lambda _{b}p_{\mathrm{a}}\left( e^{-\pi \lambda _{b}\frac{\left\| y\right\| ^{2}}{\mu ^{2}}}-e^{-\pi \lambda _{b}\left\| y\right\| ^{2}}\right) \), the mean number of points in \(\mathbb {R}^2\) is given by [37, Sect. 2.4.3]

$$\begin{aligned} \bar{K}=\int _{\mathbb {R}^{2}}\lambda _{u}^{\left( 1\right) }\left( y\right) dy. \end{aligned}$$
(5.73)

Applying the polar-Cartesian transformation, we have \(\mathrm {d}y=r\mathrm {d}r\mathrm {d}\theta \), and \(\bar{K}\) can be written as

$$\begin{aligned} \bar{K} = \!\!\int _{0}^{2\pi }\!\!\!\!\int _{0}^{\infty }\!\!\!\lambda _{b}p_{\mathrm{a}}\left( \!\!e^{-\pi \lambda _{b}\frac{r^{2}}{\mu ^{2}}}-e^{-\pi \lambda _{b}r^{2}}\!\!\right) rdrd\theta =p_{\mathrm{a}}\left( \mu ^{2}\!-\!1\right) , \end{aligned}$$
(5.74)

which is a finite value when \(\mu \) is finite.

Based on the property of the PPP [37], the number of points of \(\varPsi _u^{\left( 1\right) }\) in \(\mathbb {R}^2\) is Poisson distributed with mean \(\bar{K}\), which completes the proof.

Proof of Theorem 5.3

By substituting (5.55) into the power series \(C\left( z\right) \), we obtain

$$\begin{aligned} C\left( z\right) =\sum _{i=0}^{\infty }c_{i}z^{i}\sim \sum _{j=1}^{K}\lambda _{j}P_{j}^{\delta }B_{j}^{\delta } \left( \frac{U_{k}B_{k}}{U_{j}B_{j}}\tau \right) ^{\delta } \frac{\varGamma \left( U_{j}+\delta \right) }{\varGamma \left( U_{j}\right) }\sum _{i=0}^{\infty } \frac{\delta }{\delta -i}\frac{\varGamma \left( i+1-\delta \right) }{\varGamma \left( i+1\right) }z^{i}, \end{aligned}$$
(5.75)

and it can be expressed as

$$\begin{aligned} C\left( z\right) \sim \sum _{j=1}^{K}\lambda _{j}P_{j}^{\delta }B_{j}^{\delta } \left( \frac{U_{k}B_{k}}{U_{j}B_{j}}\tau \right) ^{\delta }\frac{\varGamma \left( U_{j}+\delta \right) }{\varGamma \left( U_{j}\right) }\varGamma \left( 1-\delta \right) \left( 1-z\right) ^{\delta }. \end{aligned}$$
(5.76)

Thus, the power series \(\bar{P}\left( z\right) \) is given by

$$\begin{aligned} \bar{P}\left( z\right) =\frac{A}{C\left( z\right) }\sim \frac{A\frac{1}{\varGamma \left( 1-\delta \right) } \left( 1-z\right) ^{-\delta }}{\sum _{j=1}^{K}\lambda _{j}P_{j}^{\delta }B_{j}^{\delta } \left( \frac{U_{k}B_{k}}{U_{j}B_{j}}\tau \right) ^{\delta } \frac{\varGamma \left( U_{j}+\delta \right) }{\varGamma \left( U_{j}\right) }}. \end{aligned}$$
(5.77)

Based on the above expression, the coefficient \(t_n\) is given by

$$\begin{aligned} \bar{p}_{n}=\frac{1}{n!}\bar{P}(z)^{\left( n\right) }\left( z\right) \mid _{z=0}\sim \frac{A\frac{1}{n!}\left( \delta \right) _{n}\frac{1}{\varGamma \left( 1-\delta \right) }}{\sum _{j=1}^{K}\lambda _{j}P_{j}^{\delta }B_{j}^{\delta }\left( \frac{U_{k}B_{k}}{U_{j}B_{j}} \tau \right) ^{\delta }\frac{\varGamma \left( U_{j}+\delta \right) }{\varGamma \left( U_{j}\right) }}. \end{aligned}$$
(5.78)

As \(p_{\mathrm{s}}\left( k\right) =\sum _{n=0}^{M_k-1}\bar{p}_{n}\), and the sum \(\sum _{n=0}^{M_k-1}\frac{1}{n!}\left( \delta \right) _{n}= \frac{\varGamma \left( M_k+\delta \right) }{\varGamma \left( 1+\delta \right) \varGamma \left( M_k\right) }\), the coverage probability is given by

$$\begin{aligned} p_{\mathrm{s}}\left( k\right) \sim \frac{A\frac{\varGamma \left( M_k+\delta \right) }{\varGamma \left( 1-\delta \right) \varGamma \left( 1+\delta \right) \varGamma \left( M_k\right) }}{\sum _{j=1}^{K}\lambda _{j}P_{j}^{\delta }B_{j}^{\delta }\left( \frac{U_{k}B_{k}}{U_{j}B_{j}} \tau \right) ^{\delta } \frac{\varGamma \left( U_{j}+\delta \right) }{\varGamma \left( U_{j}\right) }}. \end{aligned}$$
(5.79)

Using the equality \(\varGamma \left( 1+\delta \right) \varGamma \left( 1-\delta \right) =\frac{\pi \delta }{\sin \left( \pi \delta \right) } =\frac{1}{\mathrm{sinc}\left( \delta \right) }\), we obtain (5.56).

Proof of Lemma 5.3

We consider the function \(y=\frac{\mathbf {c}^{T}\varvec{\lambda }}{\mathbf {d}^{T}\varvec{\lambda }}\), where \(\varvec{\lambda }=\left[ \lambda _{1},\lambda _{2},\ldots \lambda _{K}\right] ^{T}\), \(\mathbf {c}=\left[ c_1,c_2,\ldots ,c_K\right] \) and \(\mathbf {d}=\left[ d_1,d_2,\ldots ,d_K\right] \). The partial derivative of \(f\left( \varvec{\lambda }\right) \) with respect to \(\lambda _i\) is then given by

$$\begin{aligned} \frac{\partial y}{\partial \lambda _{i}} = \frac{\sum _{j=1}^{K}d_{i}d_{j}\lambda _{j}\left( \frac{c_{i}}{d_{i}}-\frac{c_{j}}{d_{j}}\right) }{\left( \mathbf {d}^{T}\varvec{\lambda }\right) ^{2}}. \end{aligned}$$
(5.80)

It shows that changing \(\lambda _i\) will not change the sign of \(\frac{\partial y}{\partial \lambda _{i}}\), i.e., y is monotonic with respect to \(\lambda _i\). Moreover, y is independent of \(\varvec{\lambda }\) if \(\frac{c_i}{d_i}=\frac{c_j}{d_j}\) for all \(i,j\in \left\{ 1,2,\ldots ,K\right\} \).

Proof of Lemma 5.4

In this proof, we consider a more general case where the optimization problem is given by

$$\begin{aligned} \mathscr {P}_{w/\,cons} : \underset{\varvec{\lambda }}{\text {maximize}}&\frac{\mathbf {c}^{T}\varvec{\lambda }}{\mathbf {d}^{T}\varvec{\lambda }} \\ \text {subject to}&\mathbf {A}\varvec{\lambda }\le \mathbf {b}, \nonumber \\&\varvec{\lambda }\ge \mathbf {0}, \nonumber \end{aligned}$$
(5.81)

where \(\mathbf {A}\varvec{\lambda }\le \mathbf {b}\) represents an arbitrary linear constraint, \(\mathbf {A}\) is a \(n\times K\) matrix, and \(\mathbf {b}\) is a \(n\times 1\) vector with positive elements. We will find the optimal solution \(\varvec{\lambda }^\star \) in the following derivation.

First, we consider the optimization problem without the constraint \(\mathbf {A}\varvec{\lambda }\le \mathbf {b}\), i.e., the problem is given by

$$\begin{aligned} \mathscr {P}_{w/o\,cons} : \underset{\varvec{\lambda }}{\text {maximize}}&\frac{\mathbf {c}^{T}\varvec{\lambda }}{\mathbf {d}^{T}\varvec{\lambda }} \\ \text {subject to}&\varvec{\lambda }\ge \mathbf {0}. \nonumber \end{aligned}$$
(5.82)

Without loss of generality, we assume \(\frac{c_{1}}{d_{1}}\ge \frac{c_{2}}{d_{2}}\ge \cdots \ge \frac{c_{K}}{M_k}\), and then from (5.80), we find that to maximize \(p_\mathrm{s}\), \(\lambda _K\) should be 0 since \(\frac{\partial p_{\mathrm{s}}}{\partial \lambda _{K}}\le 0\).

Then, repeating the same procedure, we find \(\lambda _{K-1}=0\), \(\lambda _{K-2}=0\), and \(\lambda _{2}=0\) successively. Finally, the objective function \(p_\mathrm{s}\) is equal to \(\frac{c_1}{d_1}\) with any \(\lambda _1>0\), which is the solution of \(\mathscr {P}_{w/o\,cons}\).

Second, we consider the optimization Problem \(\mathscr {P}_{w/\,cons}\), and we want to prove that the optimal \(\varvec{\lambda }^\star \) of Problem \(\mathscr {P}_{w/o\,cons}\) is also the optimal solution of problem \(\mathscr {P}_{w/\,cons}\). To do so, we need to prove (1) \(\varvec{\lambda }^\star \) is feasible for \(\mathscr {P}_{w/\,cons}\), and (2) the optimal solution of \(\mathscr {P}_{w/\,cons}\) is \(\varvec{\lambda }^\star \).

To prove the feasibility, we assume \(\varvec{\lambda }_0^\star \) and \(\varvec{\lambda }_1^\star \) are optimal solutions of \(\mathscr {P}_{w/o\,cons}\), but \(\mathbf {A}\varvec{\lambda }_1^\star > \mathbf {b}\). Since \(\mathbf {b}>0\), and \(\varvec{\lambda }_0^\star =k\varvec{\lambda }_1^\star \) for any \(k>0\), we have \(\exists k>0\), \(\mathbf {A}\varvec{\lambda }_0^\star =k\mathbf {A}\varvec{\lambda }_1^\star \le \mathbf {b}\), i.e., there exists an optimal solution of \(\mathscr {P}_{w/o\,cons}\), which is feasible to \(\mathscr {P}_{w/\,cons}\).

Finally, since \(\mathscr {P}_{w/\,cons}\) has one more constraint than \(\mathscr {P}_{w/o\,cons}\), the solution of \(\mathscr {P}_{w/\,cons}\) should be the subset of the solution of \(\mathscr {P}_{w/o\,cons}\) and the maximum value of \(\mathscr {P}_{w/\,cons}\) will no greater than the maximum value of \(\mathscr {P}_{w/o\,cons}\). As we have proved that the optimal solution of \(\mathscr {P}_{w/o\,cons}\) is feasible in \(\mathscr {P}_{w/\,cons}\), we obtain that the maximum value of \(\mathscr {P}_{w/\,cons}\) is equal to \(\frac{c_1}{d_1}\).

Now we come back to the general MIMO HetNet case. The original problem (5.59) indicates \(\mathbf {A}=\mathbf {I}_K\) and \(\frac{c_{i}}{d_{i}}= \frac{\varGamma \left( M_{i}+\delta \right) /\varGamma \left( M_{i}\right) }{\varGamma \left( U_{i}+\delta \right) /\varGamma \left( U_{i}\right) }\). Therefore, the maximum \(p_\mathrm{s}\) is obtained by only deploying one tier which has the maximal value of \(\frac{c_{i}}{d_{i}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X., Li, C., Zhang, J., Letaief, K.B. (2019). Optimization of Multi-Antenna Wireless Networks. In: Stochastic Geometry Analysis of Multi-Antenna Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-5880-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5880-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5879-1

  • Online ISBN: 978-981-13-5880-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics