Skip to main content

An Analytical Framework for Multi-Antenna Wireless Networks

  • Chapter
  • First Online:
Stochastic Geometry Analysis of Multi-Antenna Wireless Networks
  • 644 Accesses

Abstract

This chapter presents a general analytical framework for large-scale multi-antenna wireless networks. We first introduce a general wireless network model, along with a brief survey of multi-antenna transmission techniques. Using tools from stochastic geometry, a unified framework is then presented for the tractable analysis of the multi-antenna wireless network model. To illustrate the effectiveness of this analytical framework, tractable expressions for the coverage analysis in both ad hoc and cellular networks are derived. It is shown that the presented framework makes the analysis of multi-antenna networks almost as tractable as single-antenna ones. Furthermore, it helps analytically gain key network design insights, such as revealing the impacts of the antenna size and network density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this monograph, we mainly focus on the performance analysis for downlink transmission while the uplink will be briefly discussed in Chap. 6.

  2. 2.

    The numbers of antennas deployed at different transmitters and receivers can be different. However, they are set as two values, i.e., \(N_\mathrm {t}\) and \(N_\mathrm {r}\) for the transmitter and receiver, respectively, for the ease of presentation.

  3. 3.

    For a K-tier HetNet, the coverage probability \(p_{\mathrm {c},k}(\tau )\), given that the typical receiver is associated with the k-th tier, can be calculated by (3.42), and the overall coverage probability is then given by \(\sum _{k=1}^KA_kp_{\mathrm {c},k}(\tau )\), where \(A_k\) is the probability that the typical receiver is associated with the k-th tier.

  4. 4.

    Here we omit the index d for the data stream in order to provide a neat presentation.

  5. 5.

    For network models incorporating load awareness [14, 32], the activation of transmitters can be reflected in the density \(\lambda _j\).

  6. 6.

    The matrix \(\mathbf {A}_M\) has the same expression as \(\mathbf {T}_M\) in (3.74). The change of notation here is mainly to distinguish the results in ad hoc networks from those under general network settings.

References

  1. A.M. Hunter, J.G. Andrews, S. Weber, Transmission capacity of ad hoc networks with spatial diversity. IEEE Trans. Wirel. Commun. 7, 5058–5071 (2008)

    Article  Google Scholar 

  2. J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59, 3122–3134 (2011)

    Article  Google Scholar 

  3. C. Li, J. Zhang, J.G. Andrews, K.B. Letaief, Success probability and area spectral efficiency in multiuser MIMO HetNets. IEEE Trans. Commun. 64, 1544–1556 (2016)

    Article  Google Scholar 

  4. H.S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wireless Commun. 11, 3484–3495 (2012)

    Article  Google Scholar 

  5. F. Rusek, D. Persson, B.K. Lau, E.G. Larsson, T.L. Marzetta, O. Edfors, F. Tufvesson, Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30, 40–60 (2013)

    Article  Google Scholar 

  6. G.L. Stuber, J.R. Barry, S.W. McLaughlin, Y. Li, M.A. Ingram, T.G. Pratt, Broadband MIMO-OFDM wireless communications. Proc. IEEE 92, 271–294 (2004)

    Article  Google Scholar 

  7. A. Paulraj, R. Nabar, D. Gore, Introduction to space-time wireless communications (Cambridge University Press, 2003)

    Google Scholar 

  8. R.H.Y. Louie, M.R. McKay, I.B. Collings, Open-loop spatial multiplexing and diversity communications in ad hoc networks. IEEE Trans. Inf. Theory 57, 317–344 (2011)

    Article  MathSciNet  Google Scholar 

  9. D. Gesbert, M. Kountouris, R.W. Heath Jr., C. Chae, T. Salzer, Shifting the mimo paradigm. IEEE Signal Process. Mag. 24, 36–46 (2007)

    Article  Google Scholar 

  10. M. Costa, Writing on dirty paper (corresp.). IEEE Trans. Inf. Theor. 29, 439–441 (1983)

    Article  Google Scholar 

  11. H. Harashima, H. Miyakawa, Matched-transmission technique for channels with intersymbol interference. IEEE Trans. Commun. 20, 774–780 (1972)

    Article  Google Scholar 

  12. Q.H. Spencer, A.L. Swindlehurst, M. Haardt, Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans. Signal Process. 52, 461–471 (2004)

    Article  MathSciNet  Google Scholar 

  13. X. Yu, C. Li, J. Zhang, M. Haenggi, K.B. Letaief, A unified framework for the tractable analysis of multi-antenna wireless networks. IEEE Trans. Wirel. Commun. 17, 7965–7980 (2018)

    Article  Google Scholar 

  14. C. Li, J. Zhang, K.B. Letaief, Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Trans. Wirel. Commun. 13, 2505–2517 (2014)

    Article  Google Scholar 

  15. C. Li, J. Zhang, M. Haenggi, K.B. Letaief, User-centric intercell interference nulling for downlink small cell networks. IEEE Trans. Commun. 63, 1419–1431 (2015)

    Article  Google Scholar 

  16. N. Jindal, J.G. Andrews, S. Weber, Multi-antenna communication in ad hoc networks: achieving MIMO gains with SIMO transmission. IEEE Trans. Commun. 59, 529–540 (2011)

    Article  Google Scholar 

  17. X. Yu, C. Li, J. Zhang, K.B. Letaief, A tractable framework for performance analysis of dense multi-antenna networks, in Proceedings of IEEE International Conference on Communications (ICC), (Paris, France), pp. 1–6, 2017

    Google Scholar 

  18. X. Yu, J. Zhang, M. Haenggi, K.B. Letaief, Coverage analysis for millimeter wave networks: the impact of directional antenna arrays. IEEE J. Sel. Areas Commun. 35, 1498–1512 (2017)

    Article  Google Scholar 

  19. H. Huang, C.B. Papadias, S. Venkatesan, MIMO communication for cellular networks. (Springer Science & Business Media, 2011)

    Google Scholar 

  20. X. Zhang, X. Zhou, M.R. McKay, Enhancing secrecy with multi-antenna transmission in wireless ad hoc networks. IEEE Trans. Inf. Forensics Secur. 8, 1802–1814 (2013)

    Article  Google Scholar 

  21. R.W. Heath Jr., T. Wu, Y.H. Kwon, A.C.K. Soong, Multiuser MIMO in distributed antenna systems with out-of-cell interference. IEEE Trans. Signal Process. 59, 4885–4899 (2011)

    Article  MathSciNet  Google Scholar 

  22. Y. Wu, R.H.Y. Louie, M.R. McKay, I.B. Collings, Generalized framework for the analysis of linear MIMO transmission schemes in decentralized wireless ad hoc networks. IEEE Trans. Wirel. Commun. 11, 2815–2827 (2012)

    Google Scholar 

  23. D. Zwillinger, Table of integrals, series, and products (Elsevier, Amsterdam, Netherlands, 2014)

    Google Scholar 

  24. M. Haenggi, Stochastic geometry for wireless networks (Cambridge University Press, Cambridge, U.K., 2012)

    Google Scholar 

  25. V. Chandrasekhar, M. Kountouris, J.G. Andrews, Coverage in multi-antenna two-tier networks. IEEE Trans. Wirel. Commun. 8, 5314–5327 (2009)

    Article  Google Scholar 

  26. T. Bai, R.W. Heath Jr., Coverage and rate analysis for millimeter-wave cellular networks. IEEE Trans. Wirel. Commun. 14, 1100–1114 (2015)

    Article  Google Scholar 

  27. A. Thornburg, T. Bai, R.W. Heath Jr., Performance analysis of outdoor mmWave ad hoc networks. IEEE Trans. Signal Process. 64, 4065–4079 (2016)

    Article  MathSciNet  Google Scholar 

  28. A.K. Gupta, H.S. Dhillon, S. Vishwanath, J.G. Andrews, Downlink multi-antenna heterogeneous cellular network with load balancing. IEEE Trans. Commun. 62, 4052–4067 (2014)

    Article  Google Scholar 

  29. S. Roman, The formula of Faà di Bruno. The Am. Math. Mon. 87(10), 805–809 (1980)

    Article  Google Scholar 

  30. S. Weber, J.G. Andrews, N. Jindal, The effect of fading, channel inversion, and threshold scheduling on Ad Hoc networks. IEEE Trans. Inf. Theor. 53, 4127–4149 (2007)

    Article  MathSciNet  Google Scholar 

  31. G.-C. Rota, The number of partitions of a set. The Am. Math. Mon. 71(5), 498–504 (1964)

    Article  MathSciNet  Google Scholar 

  32. A. Shojaeifard, K.A. Hamdi, E. Alsusa, D.K.C. So, J. Tang, A unified model for the design and analysis of spatially-correlated load-aware HetNets. IEEE Trans. Commun. 62, 1–16 (2014)

    Article  Google Scholar 

  33. M. Kountouris, J.G. Andrews, Downlink SDMA with limited feedback in interference-limited wireless networks. IEEE Trans. Wirel. Commun. 11, 2730–2741 (2012)

    Google Scholar 

  34. C. Saha, M. Afshang, H.S. Dhillon, 3GPP-Inspired HetNet model using poisson cluster process: Sum-product functionals and downlink coverage. IEEE Trans. Commun. 66, 2219–2234 (2018)

    Article  Google Scholar 

  35. X. Zhang, J.G. Andrews, Downlink cellular network analysis with multi-slope path loss models. IEEE Trans. Commun. 63, 1881–1894 (2015)

    Article  Google Scholar 

  36. R.K. Ganti, M. Haenggi, Asymptotics and approximation of the SIR distribution in general cellular networks. IEEE Trans. Wirel. Commun. 15, 2130–2143 (2016)

    Article  Google Scholar 

  37. K. Huang, J.G. Andrews, D. Guo, R.W. Heath Jr., R.A. Berry, Spatial interference cancellation for multiantenna mobile ad hoc networks. IEEE Trans. Inf. Theor. 58, 1660–1676 (2012)

    Article  MathSciNet  Google Scholar 

  38. A. Shojaeifard, K.A. Hamdi, E. Alsusa, D.K.C. So, J. Tang, K.K. Wong, Design, modeling, and performance analysis of multi-antenna heterogeneous cellular networks. IEEE Trans. Commun. 64, 3104–3118 (2016)

    Article  Google Scholar 

  39. Y. Wu, Y. Cui, B. Clerckx, Analysis and optimization of inter-tier interference coordination in downlink multi-antenna HetNets with offloading. IEEE Trans. Wirel. Commun. 14, 6550–6564 (2015)

    Article  Google Scholar 

  40. P. Henrici, Applied and computational complex analysis (Wiley, New York, NY, USA, 1988)

    Google Scholar 

  41. F. Baccelli, B. Błaszczyszyn, Stochastic geometry and wireless networks: volume I theory (vol. 3. Now Publishers Inc., 2009)

    Google Scholar 

  42. H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tuts. 15, 996–1019 (2013)

    Article  Google Scholar 

  43. D. Commenges, M. Monsion, Fast inversion of triangular Toeplitz matrices. IEEE Trans. Autom. Control 29(3), 250–251 (1984)

    Article  MathSciNet  Google Scholar 

  44. D. Kressner, R. Luce, Fast computation of the matrix exponential for a Toeplitz matrix, arXiv preprintarXiv:1607.01733 (2016)

  45. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables (vol. 55. Courier Corporation, 1965)

    Google Scholar 

  46. J. Segura, Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374(2), 516–528 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Corollary 3.1

Since \(g\sim \mathrm {Gamma}(\kappa ,\beta )\), i.e., \(f_g(u)=\frac{u^{\kappa -1}e^{-\frac{u}{\beta }}}{\beta ^\kappa \varGamma (\kappa )}\), according to (3.88), (3.89), and (3.92), we have

$$\begin{aligned} c_n&=\frac{(-s)^n}{n!}\frac{\mathrm {d}^n}{\mathrm {d}s^n}\left[ 1-\frac{\eta (s)}{\pi \lambda r_0^2}\right] \end{aligned}$$
(3.126)
$$\begin{aligned}&= -\frac{(-s)^n}{n!}\frac{\mathrm {d}^n}{\mathrm {d}s^n}\left\{ \delta (sr_0^{-\alpha })^\delta \mathbb {E}_g\left[ g^\delta \gamma (-\delta ,sr_0^{-\alpha }g)\right] \right\} \nonumber \\&=-\frac{(-s)^n}{n!}\frac{\mathrm {d}^n}{\mathrm {d}s^n}\int _1^\infty \mathbb {E}_g\left[ \exp \left( -sr_0^{-\alpha }v^{-\frac{\alpha }{2}}g\right) \right] \mathrm {d}v\\&= -\frac{(-s)^n}{n!}\int _1^\infty \left[ \frac{\mathrm {d}^n}{s^n}\frac{1}{\left( 1+\beta r_0^{-\alpha }v^{-\frac{\alpha }{2}}s\right) ^\kappa }\right] \mathrm {d}v\nonumber \\&= -\frac{\varGamma (\kappa +n)}{\varGamma (\kappa )\varGamma (n+1)}\left( \frac{\tau \beta }{\theta }\right) ^\frac{2}{\alpha }\int _{\left( \frac{\tau \beta }{\theta }\right) ^{-\frac{2}{\alpha }}}^\infty \frac{\left( v^{-\frac{\alpha }{2}}\right) ^n}{\left( 1+v^{-\frac{\alpha }{2}}\right) ^{\kappa +n}}\mathrm {d}v\nonumber \\&=\frac{\varGamma (\kappa +n)}{\varGamma (\kappa )\varGamma (n+1)}\frac{\delta }{\delta - n}\left( \frac{\tau \beta }{\theta }\right) ^n{}_2F_1\left( n+\kappa ,n-\delta ;n+1-\delta ;-\frac{\tau \beta }{\theta }\right) ,\nonumber \end{aligned}$$
(3.127)

where (3.127) follows from the definition of the lower incomplete gamma function \(\gamma (s,x)\), and the last equality follows from the integral representation of the hypergeometric function [23, Sect. 9.14], which completes the proof.

Proof of Proposition 3.2

According to the two steps of applying Theorem 3.2 presented in Remark 4, first, we calculate the conditional Laplace transform, expressed as

$$\begin{aligned} \mathscr {L}(s)=\exp \left\{ -2\pi \lambda \int _0^\infty {\left( 1-\mathbb {E}_{g}[\exp (-sgv^{-\alpha })]\right) }v\mathrm {d}v\right\} . \end{aligned}$$
(3.128)

To obtain a coverage probability expression for arbitrarily distributed interferers’ power gains, we propose to swap the order of the integral and the expectation. In this way, part of the exponent is given by

$$\begin{aligned} \begin{aligned}&{=\,\,\,}2\mathbb {E}_{g}\left\{ \int _0^\infty {\left[ 1-\exp (-sgv^{-\alpha })\right] }v\mathrm {d}v\right\} \\&=\mathbb {E}_g\left\{ (sg)^\frac{2}{\alpha }\frac{2}{\alpha }\int _0^1\frac{v}{1-v}\left[ -\ln (1-v)\right] ^{-\frac{2}{\alpha }-1}\mathrm {d}v\right\} \\&=\mathbb {E}_g\left\{ (sg)^\delta \varGamma (1-\delta )\right\} . \end{aligned} \end{aligned}$$
(3.129)

Therefore, the log-Laplace transform can be written as

$$\begin{aligned} \eta (s)=-\pi \lambda \varGamma (1-\delta )s^\delta \mathbb {E}_g\left[ g^\delta \right] , \end{aligned}$$
(3.130)

and the nonzero entries of \(\mathbf {A}_M\) are determined by

$$\begin{aligned} \begin{aligned} a_n&=\frac{(-s)^n}{n!}\eta ^{(n)}(s)\\&=-\frac{(-1)^n}{n!} \pi \lambda r_0^2\varGamma (1-\delta )(\delta )_n\left( \frac{\tau }{\theta }\right) ^\delta \mathbb {E}_g\left[ g^\delta \right] . \end{aligned} \end{aligned}$$
(3.131)

Since there is no need to take an expectation over \(r_0\) in the ad hoc network model, the derivation steps similar to (3.97) and (3.98) are unnecessary, and the proof is complete.

Proof of Corollary 3.3

According to (3.106), the Laplace transform of noise and interference is

$$\begin{aligned} \mathscr {L}(s)=p_0=e^{\eta (s)}=\exp \left( -s\sigma _\mathrm {n}^2-\pi \lambda \varGamma (1-\delta )s^\delta \mathbb {E}_g\left[ g^\delta \right] \right) . \end{aligned}$$
(3.132)

Note that \(\varGamma (1-\delta )\) is a positive term due to the fact that \(0<\delta <1\). Hence, the Laplace transform \(p_0\) is a convex and monotonically decreasing function with respect to the transmitter density \(\lambda \).

Furthermore, according to (3.107), the signs of \(\{a_n\}_{n=1}^{M-1}\) are critical, i.e.,

$$\begin{aligned} a_n= -\frac{(-1)^n}{n!}(\delta )_n\pi \lambda \varGamma (1-\delta )s^\delta \mathbb {E}_g\left[ g^\delta \right] +s\sigma _\mathrm {n}^2\mathbbm {1}(n=1). \end{aligned}$$
(3.133)

Since \((-1)^n(\delta )_n=(-\delta )^{(n)}<0\) with \((x)^{(n)}\) denoting the rising factorial, we have \(a_n>0\) for \(1\le n\le M\). Recall that the recursive relations between \(\{p_n\}_{n=1}^{M-1}\) are

$$\begin{aligned} p_n=\sum _{i=0}^{n-1}\frac{n-i}{n}a_{n-i}p_i. \end{aligned}$$
(3.134)

Since the term \(\frac{n-i}{n}a_{n-i}\) is positive, it turns out that all \(\{p_n\}_{n=1}^{M-1}\) have the same monotonicity and convexity with respect to \(\lambda \). Recalling that \(p_\mathrm {c}(\tau )=\sum _{n=0}^{M-1}p_n\), the monotonicity and concavity in Corollary 4.3 have been proved. Next, we prove the expression (3.111).

We first write \(\mathbf {A}_M^\prime \) in the form

$$\begin{aligned} \mathbf {A}_M^\prime =a_0^\prime \mathbf {I}_M+(\mathbf {A}_M^\prime -a_0^\prime \mathbf {I}_M). \end{aligned}$$
(3.135)

Since \(\mathbf {A}_M^\prime \) is a lower triangular Toeplitz matrix, the second part is a nilpotent matrix, i.e., \((\mathbf {A}_M^\prime -a_0^\prime \mathbf {I}_M)^n=\mathbf {0}\) for \(n\ge M\). Hence, according to the properties of matrix exponential, we have

$$\begin{aligned} e^{\mathbf {A}_M}=e^{\lambda \mathbf {A}_M^\prime }=e^{a_0^\prime \lambda }\cdot \sum _{n=0}^{M-1}\frac{1}{n!}\left[ \lambda \left( \mathbf {A}_M^\prime -a_0^\prime \mathbf {I}_M\right) \right] ^n. \end{aligned}$$
(3.136)

Since it has been shown that \(a_n^\prime >0\) for \(n\ge 1\), \(\mathbf {A}_M^\prime -a_0^\prime \mathbf {I}_M\) is a strictly lower triangular Toeplitz matrix with all positive entries, and so are the matrices \((\mathbf {A}_M^\prime -a_0^\prime \mathbf {I}_M)^n\). Therefore,

$$\begin{aligned} \left\| e^{\lambda \mathbf {A}_M^\prime }\right\| _1= e^{a_0^\prime \lambda }\cdot \sum _{n=0}^{M-1}\frac{1}{n!}\left[ \lambda ^n\left\| \left( \mathbf {A}_M^\prime -a_0^\prime \mathbf {I}_M\right) ^n\right\| _1\right] , \end{aligned}$$
(3.137)

which completes the proof of Corollary 4.3.

Proof of Proposition 3.4

According to Theorem 3.1, the outage probability is \(p_\mathrm {o}(\tau )=1-\sum _{n=0}^{M-1}\bar{p}_n\), and then we have

$$\begin{aligned} \begin{aligned} \underset{M\rightarrow \infty }{\lim }\frac{p_\mathrm {o}(M+1)}{p_\mathrm {o}(M)}&=1-\underset{M\rightarrow \infty }{\lim }\frac{\bar{p}_M}{1-\sum _{n=0}^{M-1}\bar{p}_n}\\&=1-\underset{M\rightarrow \infty }{\lim }\frac{1}{1-\sum _{n=M}^\infty \frac{\bar{p}_n}{\bar{p}_M}}. \end{aligned} \end{aligned}$$
(3.138)

Since \(r_\mathrm {c}\) is the radius of convergence of the power series \(\bar{P}(z)\), i.e., \(r_\mathrm {c}=\underset{n\rightarrow \infty }{\lim }\frac{\bar{p}_n}{\bar{p}_{n+1}}\), the above equation can be further simplified as

$$\begin{aligned} \underset{M\rightarrow \infty }{\lim }\frac{p_\mathrm {o}(M+1)}{p_\mathrm {o}(M)}=1-\underset{M\rightarrow \infty }{\lim }\frac{1}{\sum _{n=0}^\infty \left( \frac{1}{r_\mathrm {c}}\right) ^n}=\frac{1}{r_\mathrm {c}}. \end{aligned}$$
(3.139)

According to (3.126), the coefficients in the power series C(z) are given by

$$\begin{aligned} c_n=\frac{(-s)^n}{n!}c_0^{(n)}(s), \end{aligned}$$
(3.140)

where \(c_0(s)=-\delta (sr_0^{-\alpha })^\delta \mathbb {E}_g\left[ g^\delta \gamma (-\delta ,sr_0^{-\alpha }g)\right] \). By reversely applying the Taylor expansion, the power series C(z) can be written as

$$\begin{aligned} C(z)=\sum _{n=0}^\infty c_n z^n=\sum _{n=0}^\infty \frac{(-sz)^n}{n!}c_0^{(n)}(s)=c_0((1-z)s). \end{aligned}$$
(3.141)

Recalling that in (3.97) we proved that \(\bar{P}(z)=\frac{1}{C(z)}\), thus the radius of convergence of \(\bar{P}(z)\) is the solution of the equation \(C(r_\mathrm {c})=c_0((1-r_\mathrm {c})s)=0\), which is equivalent to (3.120).

Next, we prove that the solution \(r_\mathrm {c}\) to equation (3.120) is larger than 1. The left-hand side of (3.120) can be rewritten as

$$\begin{aligned} \begin{aligned}\mathbb {E}_g\left[ {}_1F_1\left( -\delta ;1-\delta ;\frac{(r_\mathrm {c}-1)\tau }{\theta }g\right) \right] 1+\delta \mathbb {E}_g\left[ \int _0^1\frac{1-e^{\frac{(r_\mathrm {c}-1)\tau }{\theta }gv}}{v^{1+\delta }}\mathrm {d}v\right] . \end{aligned} \end{aligned}$$
(3.142)

Since \(0<\delta <1\), \(\tau >0\), \(\beta >0\), and g is assumed as a nonnegative random variable with arbitrary distributions, it is seen from (3.142) that \(C(r_\mathrm {c})\) is a monotonically decreasing function of \(r_\mathrm {c}\). Furthermore, it is easy to check that, when \(r_\mathrm {c}=1\), we have \(C(1)=1\). Following the monotonicity of \(C(r_\mathrm {c})\) and the fact that \(C(1)>0\), we conclude that there exists only one solution of (3.120) that is larger than 1.

Proof of Proposition 3.5

According to (3.131), we have

$$\begin{aligned} \begin{aligned} A(z)&=\sum _{n=0}^\infty a_n z^n =\sum _{n=0}^\infty \frac{(-sz)^n}{n!}\eta ^{(n)}(s)=\eta ((1-z)s)\\&=-\pi \lambda r_0^2\varGamma (1-\delta )\mathbb {E}_g\left[ g^\delta \right] (1-z)^\delta =-\mu (1-z)^\delta . \end{aligned} \end{aligned}$$
(3.143)

Therefore, with the formulas (3.95) and (3.97), we have the closed-form expression

$$\begin{aligned} \bar{P}(z)=P(z)=e^{{A(z)}}=e^{-\mu (1-z)^\delta }. \end{aligned}$$
(3.144)

When \(\alpha =4\), i.e., \(\delta =1/2\), the power series \(\bar{P}(z)\) is given by \(\bar{P}(z)=\sum _{n=0}^\infty \bar{p}_nz^n=e^{-\mu \sqrt{1-z}}\). According to the definition of the modified Bessel function of the second kind \(K_n(x)\) [45, Ch. 9.6], we have

$$\begin{aligned} \bar{p}_n=\sqrt{\frac{2\mu }{\pi }}\frac{(\mu /2)^n}{n!}K_{n-\frac{1}{2}}(\mu ). \end{aligned}$$
(3.145)

Then, define the ratio to test the monotonicity as

$$\begin{aligned} \frac{\bar{p}_{n+1}}{\bar{p}_n}&=\frac{\mu }{2(n+1)}\frac{K_{n+\frac{1}{2}}(\mu )}{K_{n-\frac{1}{2}}(\mu )}\nonumber \\&\le \frac{n+\sqrt{n^2+\mu ^2}}{2(n+1)}, \end{aligned}$$
(3.146)

where the inequality adopted in (3.146) comes from [46, Th. 1]. Finally, it can be checked that \(\frac{n+\sqrt{n^2+\mu ^2}}{2(n+1)}<1\) when \(n>\frac{\mu ^2}{4}-1\), which completes the proof.

Proof of Proposition 3.6

By performing coefficient extraction to (3.144), we have

$$\begin{aligned} \begin{aligned} \bar{P}(z)&=e^{\mu (1-z)^\delta }=\sum _{k=0}^\infty \frac{\mu ^k(1-z)^{\delta k}}{k!}\\&=\sum _{k=0}^\infty \frac{\mu ^k}{k!}\sum _{n=0}^\infty \frac{(-1)^n}{n!}(\delta k)_nz^n \sum _{n=0}^\infty \left[ \frac{(-1)^n}{n!}\sum _{k=0}^\infty \frac{\mu ^k}{k!}(\delta k)_n\right] z^n, \end{aligned} \end{aligned}$$
(3.147)

and it follows that

$$\begin{aligned} \bar{p}_n&=\frac{(-1)^n}{n!}\sum _{k=0}^\infty \frac{(-\mu )^k}{k!}(\delta k)_n \nonumber \\&=\frac{(-1)^n}{n!}\sum _{k=0}^\infty \frac{(-\mu )^k}{k!} \sum _{p=0}^n\rho (n,p)(\delta k)^p \end{aligned}$$
(3.148)
$$\begin{aligned}&=\frac{(-1)^n}{n!}\sum _{p=0}^n\rho (n,p)\delta ^p\sum _{k=0}^\infty \frac{(-\mu )^k}{k!} k^p \nonumber \\&=\frac{(-1)^ne^{-\mu }}{n!}\sum _{k=1}^n\rho (n,k)T_k(-\mu )\delta ^k, \end{aligned}$$
(3.149)

where steps (3.148) and (3.149) reversely apply the definition of the Stirling numbers of the first kind and the Touchard polynomial, respectively.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, X., Li, C., Zhang, J., Letaief, K.B. (2019). An Analytical Framework for Multi-Antenna Wireless Networks. In: Stochastic Geometry Analysis of Multi-Antenna Wireless Networks. Springer, Singapore. https://doi.org/10.1007/978-981-13-5880-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5880-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5879-1

  • Online ISBN: 978-981-13-5880-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics