Skip to main content

Improvements in DNA Extraction and Loop-Mediated Isothermal Amplification (LAMP) Assist Application of LAMP on Malaria Point-of-Care Diagnostic Devices

  • Conference paper
  • First Online:
7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7) (BME 2018)

Abstract

Early detection right at epidemic areas can prevent infectious diseases from propagation. Currently, the most common nucleic acid test—polymerase chain reaction (PCR) is time-consuming, complex, expensive and thermocycler required, thus limiting its utility in poor laboratory conditions or even non-laboratory condition of epidemic areas. Loop-mediated isothermal amplification (LAMP) is quick, cheap, sensitive and isothermal assay could be combined with a simple DNA extraction method to integrate into Lab-on-a-chip (LOC) device. Here, we attempted to improve LAMP method for malaria diagnosis on portable microfluidics chip platform by optimizing DNA extraction using boil and spin method and altering Tris-containing amplification buffer for ascertaining changing in pH of reaction solution. Basically, blood sample was mixed with extraction buffer containing Sodium Dedocyl Sulfate (SDS) concentration and treated under high temperature condition. Four concentrations of SDS (0, 0.4, 0.8 and 1%) were tested along with different temperature (65 and 95 °C) to adapt into LOC platform and avoid denaturation of LAMP reagent. All samples treated at 65 °C showed the presence of DNA after extraction. Furthermore, DNA amplification buffer was minimized Tris concentration to facilitate result read-out step. The releasing of hydrogen ion from amplification reaction causes increasing in pH which could be recognized by color of pH indicator paper or dye, for example, phenolphthalein. Throughout a series of experiments, LAMP is demonstrated that it can also occur in low-Tris buffer with pH indicator dye, efficiently. The positive sample will have a change from pink to transparent in solution color, otherwise, the negative sample will maintain pink. These improvements allowed us to adapt LAMP technique into Point-of-care (POC) devices in which the whole process run under isothermal condition (65 °C) and non-instrument required visual detection. The LAMP microfluidics chip will be potential tool for early detection infectious diseases and several other diseases in non-laboratory condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World malaria report 2017. Geneva: World Health Organization (2017)

    Google Scholar 

  2. Chinkhumba, J., et al.: Comparative field performance and adherence to test results of four malaria rapid diagnostic tests among febrile patients more than five years of age in Blantyre, Malawi. Malar. J. 9(1), 209 (2010)

    Article  Google Scholar 

  3. Endeshaw, T., et al.: Performance of local light microscopy and the ParaScreen Pan/Pf rapid diagnostic test to detect malaria in health centers in Northwest Ethiopia. PloS one 7(4), e33014 (2012)

    Article  Google Scholar 

  4. Mekonnen, S.K., et al.: Return of chloroquine-sensitive Plasmodium falciparum parasites and emergence of chloroquine-resistant Plasmodium vivax in Ethiopia. Malar. J. 13(1), 244 (2014)

    Article  Google Scholar 

  5. Chou, M., et al.: Performance of “VIKIA Malaria Ag Pf/Pan” (IMACCESS®), a new malaria rapid diagnostic test for detection of symptomatic malaria infections. Malar. J. 11(1), 295 (2012)

    Article  Google Scholar 

  6. Aydin-Schmidt, B., et al.: Loop mediated isothermal amplification (LAMP) accurately detects malaria DNA from filter paper blood samples of low density parasitaemias. PloS one 9(8), e103905 (2014)

    Article  Google Scholar 

  7. Cunningham, J., Gatton, M.L., Kolaxzinski, K.: Malaria rapid diagnostic test performance: results of WHO product testing of malaria RDTs: Round 7 (2015–2016) (2017)

    Google Scholar 

  8. Notomi, T., et al.: Loop-mediated isothermal amplification of DNA. Nucl. Acids Res. 28(12), e63–e63 (2000)

    Article  Google Scholar 

  9. Han, E.-T., et al.: Detection of four Plasmodium species by genus-and species-specific loop-mediated isothermal amplification for clinical diagnosis. J. Clin. Microbiol. 45(8), 2521–2528 (2007)

    Article  Google Scholar 

  10. Mori, Y., Kanda, H., Notomi, T.: Loop-mediated isothermal amplification (LAMP): recent progress in research and development. J. Infect. Chemother. 19(3), 404–411 (2013)

    Article  Google Scholar 

  11. Poon, L.L.M., et al.: Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin. Chem. 52(2), 303–306 (2006)

    Article  Google Scholar 

  12. Pourmand, N., et al.: Direct electrical detection of DNA synthesis. Proc. Natl. Acad. Sci. 103(17), 6466–6470 (2006)

    Article  Google Scholar 

  13. Purushothaman, S., Toumazou, C., Ou, C.-P.: Protons and single nucleotide polymorphism detection: a simple use for the ion sensitive field effect transistor. Sens. Actuators B: Chem. 114(2), 964–968 (2006)

    Article  Google Scholar 

  14. Rothberg, J.M., et al.: An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356), 348 (2011)

    Article  Google Scholar 

  15. Toumazou, C., et al.: Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10(7), 641 (2013)

    Article  Google Scholar 

  16. Hopkins, H., et al.: Highly sensitive detection of malaria parasitemia in a malaria-endemic setting: performance of a new loop-mediated isothermal amplification kit in a remote clinic in Uganda. J. Infect. Dis. 208(4), 645–652 (2013)

    Article  Google Scholar 

  17. Cook, J., et al.: Loop-mediated isothermal amplification (LAMP) for point-of-care detection of asymptomatic low-density malaria parasite carriers in Zanzibar. Malar. J. 14(1), 43 (2015)

    Article  Google Scholar 

  18. Tanner, N.: Improve reagents for isothermal DNA amplification. Feature article. New England Biolabs Inc. Available online: http://www.neb-online.de/isothermal_amp.pdf (2015)

Download references

Acknowledgements

This research is funded by International University, VNU-HCM under grant number T2017-02-BME.

Conflict of Interest The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Ly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ly, H. et al. (2020). Improvements in DNA Extraction and Loop-Mediated Isothermal Amplification (LAMP) Assist Application of LAMP on Malaria Point-of-Care Diagnostic Devices. In: Van Toi , V., Le, T., Ngo, H., Nguyen, TH. (eds) 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7). BME 2018. IFMBE Proceedings, vol 69. Springer, Singapore. https://doi.org/10.1007/978-981-13-5859-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5859-3_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5858-6

  • Online ISBN: 978-981-13-5859-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics