Composite Nano-fiber Mats Consisting of Biphasic Calcium Phosphate Loaded Polyvinyl Alcohol—Gelatin for Bone Tissue Engineering

Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 69)


Electrospun blends of biphasic calcium phosphate (BCP) loaded polyvinyl alcohol (PVA)-gelatin (GE) were created with the aim of fabricating biodegradable scaffolds for bone tissue engineering. The process parameters including the electrical field and tip-to-collector distance (TCD) were investigated. The morphology of these hybrid scaffolds were characterized by scanning electron microscope (SEM). X-ray diffraction (XRD) was used to determine the crystallinity of the membrane. Adhesion of osteoblastic cells (MG-63) onto the BCP loaded PVA/GE composite nano-fiber mat was performed to assess potential of the product as a bone scaffold. This result suggests that the BCP loaded PVA/GE composite nano-fiber mat has a high potential for use in the field of bone regeneration and tissue engineering.


Electrospinning Nano-fiber Biphasic calcium phosphate nanoparticles Bone tissue engineering 


Conflicts of Interest Statement

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    Patrick, C.W., Mikos, A.G., McIntire, L.V.: Frontiers in Tissue Engineering. Elsevier (1998)Google Scholar
  2. 2.
    Greiner, A., Wendorff, J.H.: Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Ouyang, H., Lim, C.T., Ramakrishna, S., Huang, Z.M.: J. Biomed. Mater. Res. Part B: Appl. Biomater. 72(1), 156–165 (2005)CrossRefGoogle Scholar
  4. 4.
    Rujitanaroj, P.-O., Pimpha, N., Supaphol, P.: Polymer 49(21), 4723–4732 (2008)CrossRefGoogle Scholar
  5. 5.
    Linh, B., Thuy, N., Lee, K.H., Lee, B.T.: J. Biomed. Mater. Res. Part A 101(8), 2412–2423 (2013)CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Xia, J., Pang, X., Zhao, M., Wang, B., Yang, L., Wan, H., Wu, J., Fu, S.: Mater. Sci. Eng. C 73, 537–543 (2017)CrossRefGoogle Scholar
  7. 7.
    Lutolf, M., Hubbell, J.: Nat. Biotechnol. 23(1), 47 (2005)CrossRefGoogle Scholar
  8. 8.
    Linh, N.T.B., Lee, B.-T.: J. Biomater. Appl. 27(3), 255–266 (2012)CrossRefGoogle Scholar
  9. 9.
    Yang, D., Li, Y., Nie, J.: Carbohyd. Polym. 69(3), 538–543 (2007)CrossRefGoogle Scholar
  10. 10.
    Jayaraman, P., Gandhimathi, C., Venugopal, J.R., Becker, D.L., Ramakrishna, S., Srinivasan, D.K.: Adv. Drug Deliv. Rev. 94, 77–95 (2015)CrossRefGoogle Scholar
  11. 11.
    Tateishi, T., Chen, G., Ushida, T.: J. Artif. Organs 5(2), 77–83 (2002)CrossRefGoogle Scholar
  12. 12.
    Liu, X., Ma, P.X.: Ann. Biomed. Eng. 32(3), 477–486 (2004)CrossRefGoogle Scholar
  13. 13.
    Linh, N.T.B., Min, Y.K., Song, H.Y., Lee, B.T.: J. Biomed. Mater. Res. Part B: Appl. Biomater. 95(1), 184–191 (2010)CrossRefGoogle Scholar
  14. 14.
    Teixeira, A.I., Nealey, P.F., Murphy, C.J.: J. Biomed. Mater. Res. Part A 71(3), 369–376 (2004)CrossRefGoogle Scholar
  15. 15.
    Laurencin, C.T., Ambrosio, A., Borden, M., Cooper Jr., J.: Annu. Rev. Biomed. Eng. 1(1), 19–46 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Engineering Science, Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
  2. 2.Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical EngineeringInternational University, Vietnam National University-Ho Chi Minh City (VNU-HCM)Ho Chi Minh CityVietnam
  3. 3.Department of Regenerative Medicine, College of MedicineSoonchunhyang UniversityCheonanRepublic of Korea

Personalised recommendations