Skip to main content

Glycan Biomarkers for Cancer and Various Disease

  • Chapter
  • First Online:
Glycoscience: Basic Science to Applications

Abstract

Liver fibrosis, Glyco-biomarker, Glyco-diagnostics, Glycoprotein, Lectin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References for Section 18.1

  1. Taniguchi N et al (2009) The second golden age of glycomics: from functional glycomics to clinical applications. J Proteome Res 8:425–426.

    Article  CAS  Google Scholar 

  2. Turner GA (1992) N-glycosylation of serum proteins in disease and its investigation using lectins. Clin Chim Acta 208:149–171.

    Article  CAS  Google Scholar 

  3. Kagebayashi C et al (2009) Automated immunoassay system for AFP-L3% using on-chip electrokinetic reaction and separation by affinity electrophoresis. Anal Biochem 388:306–311.

    Article  CAS  Google Scholar 

  4. Kuno A et al (2013) A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep 3:1065.

    Article  Google Scholar 

  5. Ito K et al (2017) Serum WFA+-M2BP levels predict liver fibrosis, development of hepatocellular carcinoma, and overall survival: a meta-analysis. J Gastroenterol Hepatol 32:1922–1930.

    Article  CAS  Google Scholar 

References for Section 18.2

  1. Taketa K (1990) Alpha-fetoprotein: reevaluation in hepatology. Hepatology 12:1420–1432.

    Article  CAS  Google Scholar 

  2. Noda K et al (1998) Gene expression of alpha1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein. Hepatology 28:944–952.

    Article  CAS  Google Scholar 

  3. Kuno A et al (2013) A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep 3:1065.

    Article  Google Scholar 

  4. Wang Y et al (2015) Loss of α1,6-fucosyltransferase suppressed liver regeneration: implication of core fucose in the regulation of growth factor receptor-mediated cellular signaling. Sci Rep 5:8264.

    Article  CAS  Google Scholar 

  5. Kamada Y et al (2015) A novel noninvasive diagnostic method for nonalcoholic steatohepatitis using two glycobiomarkers. Hepatology 62:1433–1443.

    Article  CAS  Google Scholar 

References for Section 18.3

  1. Okuyama N et al (2006) Fucosylated haptoglobin is a novel marker for pancreatic cancer: a detailed analysis of the oligosaccharide structure and a possible mechanism for fucosylation. Int J Cancer 118:2803–2808.

    Article  CAS  Google Scholar 

  2. Nakano M et al (2008) Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: a novel approach for the development of tumor markers. Int J Cancer 122:2301–2309.

    Article  CAS  Google Scholar 

  3. Deguchi T et al (2010) Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express alpha-gal epitopes: a novel approach to immunotherapy in pancreatic cancer. Cancer Res 70:5259–5269.

    Article  CAS  Google Scholar 

  4. Uozumi N et al (2010) Identification of a novel type of CA19-9 carrier in human bile and sera of cancer patients: an implication of the involvement in nonsecretory exocytosis. J Proteome Res 9:6345–6353.

    Article  CAS  Google Scholar 

  5. Miyoshi E, Kamada Y (2016) Application of glycoscience to the early detection of pancreatic cancer. Cancer Sci 107:1357–1362.

    Article  CAS  Google Scholar 

References for Section 18.4

  1. Nakayama J et al (1999) Expression cloning of a human α1,4-N-acetylglucosaminyltransferase that forms GlcNAcα1→4Galβ→R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc Natl Acad Sci U S A 96:8991–8996.

    Article  CAS  Google Scholar 

  2. Kawakubo M et al (2004) Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science 305:1003–1006.

    Article  CAS  Google Scholar 

  3. Karasawa F et al (2012) Essential role of gastric gland mucin in preventing gastric cancer in mice. J Clin Invest 122:923–934.

    Article  CAS  Google Scholar 

  4. Shiratsu K et al (2014) Loss of gastric gland mucin-specific O-glycan is significantly associated with progression of differentiated-type adenocarcinoma of the stomach. Cancer Sci 105:126–133.

    Article  CAS  Google Scholar 

  5. Yamada S et al (2015) Reduced gland mucin-specific O-glycan in gastric atrophy: a possible risk factor for differentiated-type adenocarcinoma of the stomach. J Gastroenterol Hepatol 30:1478–1484.

    Article  CAS  Google Scholar 

References for Section 18.5

  1. Ishikawa T et al (2017) An automated micro-total immunoassay system for measuring cancer-associated alpha2,3-linked Sialyl N-glycan-carrying prostate-specific antigen may improve the accuracy of prostate cancer diagnosis. Int J Mol Sci 18:pii: E470

    Google Scholar 

  2. Hagiwara K et al (2017) Wisteria floribunda agglutinin and its reactive-glycan-carrying prostate-specific antigen as a novel diagnostic and prognostic marker of prostate cancer. Int J Mol Sci 18:pii: E261

    Article  Google Scholar 

  3. Tsui K-H et al (2008) Evaluating the function of matriptase and N-acetylglucosaminyltransferase V in prostate cancer metastasis. Anticancer Res 28:1993–1999

    Google Scholar 

  4. Kojima Y et al (2015) Detection of Core2 beta-1,6-N-Acetylglucosaminyltransferase in post-digital rectal examination urine is a reliable Indicator for extracapsular extension of prostate cancer. PLoS One 10:e0138520

    Article  Google Scholar 

  5. Bao X et al (2009) Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Proc Natl Acad Sci U S A 106:12109–12114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Atsushi Kuno , Eiji Miyoshi , Jun Nakayama , Chikara Ohyama , Akira Togayachi , Atsushi Kuno , Eiji Miyoshi , Eiji Miyoshi , Jun Nakayama , Chikara Ohyama or Akira Togayachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuno, A., Miyoshi, E., Nakayama, J., Ohyama, C., Togayachi, A. (2019). Glycan Biomarkers for Cancer and Various Disease. In: Taniguchi, N., et al. Glycoscience: Basic Science to Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-5856-2_18

Download citation

Publish with us

Policies and ethics