Advertisement

Density Peak Clustering Based on Firefly Algorithm

  • Jiayuan Wang
  • Tanghuai FanEmail author
  • Zhifeng Xie
  • Xi Zhang
  • Jia Zhao
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 834)

Abstract

In density peak clustering the choice of cut-off distance is not theoretically supported, and to address this concern, we propose density clustering based on firefly algorithm. The certainty between data is determined on the basis of density estimation entropy. The cut-off distance corresponding to the minimum entropy is found by iterative optimization of FA, and then substituted into the standard density clustering algorithm. Simulation experiments are conducted on eight artificial datasets. Compared with the standard density peak clustering, our method can choose the cut-off distance in a self-adaptive manner on different datasets, which improves the clustering effect.

Keywords

Density peak clustering Cut-off distance Density estimation entropy Firefly algorithm 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant (Nos. 61663029, 51669014, 61563036), The Science Fund for Distinguished Young Scholars of Jiangxi Province under Grant (No. 2018ACB21029), National Undergraduate Training Programs for Innovation and Entrepreneurship under Grant (No. 201711319001) and the project of Nanchang Institute of Technology’s graduate student innovation program under Grant (Nos. YJSCX2017023, YJSCX20180023).

References

  1. 1.
    Xu, R.: Survey of Clustering Algorithms. IEEE Press (2005)Google Scholar
  2. 2.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Saxena, A., Prasad, M., Gupta, A., et al.: A review of clustering techniques and developments. Neurocomputing 267, 664–681 (2017)CrossRefGoogle Scholar
  4. 4.
    Karami, A., Guerrero-Zapata, M.: A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks. Neurocomputing 149, 1253–1269 (2015)CrossRefGoogle Scholar
  5. 5.
    Shen, J., Hao, X., Liang, Z., et al.: Real-time superpixel segmentation by dbscan clustering algorithm. IEEE Trans. Image Process. 25(12), 5933–5942 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yu, Q., Luo, Y., Chen, C., et al.: Outlier-eliminated k -means clustering algorithm based on differential privacy preservation. Appl. Intel. 45(4), 1179–1191 (2016)CrossRefGoogle Scholar
  7. 7.
    Goldberger, J., Tassa, T.: A hierarchical clustering algorithm based on the Hungarian method. Pattern Recogn. Lett. 29(11), 1632–1638 (2008)CrossRefGoogle Scholar
  8. 8.
    Viswanath, P., Pinkesh, R.: l-DBSCAN: a fast hybrid density based clustering method. In: International Conference on Pattern Recognition, pp. 912–915. IEEE Computer Society (2006)Google Scholar
  9. 9.
    Huang, J., Hong, Y., Zhao, Z., et al.: An energy-efficient multi-hop routing protocol based on grid clustering for wireless sensor networks. Clust. Comput. 20(3), 1–13 (2017)Google Scholar
  10. 10.
    Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Mach. Learn. Sci. 344(6191), 1492–1496 (2014)CrossRefGoogle Scholar
  11. 11.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  12. 12.
    Lv, Li, Zhao, Jia: The Firefly algorithm with Gaussian disturbance and local search. J. Signal Process. Syst. 90(8–9), 1123–1131 (2018)CrossRefGoogle Scholar
  13. 13.
    Lv, L., Zhao, J., Wang, J., et al.: Multi-objective firefly algorithm based on compensation factor and elite learning. Future Gener. Comput. Syst. (2018).  https://doi.org/10.1016/j.future.2018.07.047CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Zhao J., Li, P., et al.: Soft subspace clustering algorithm based on improved Firefly algorithm. J. Nanchang Inst. Technol.37(4), 61–67 (2018)Google Scholar
  15. 15.
    Sun, H., Xie, H., Zhao, J.: Global optical guided artificial bee colony algorithm based on sinusoidal selection probability model. J. Nanchang Inst. Technol. 37(4), 61–67 (2018)Google Scholar
  16. 16.
    Fahad, A., Alshatri, N., Tari, Z., et al.: A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2(3), 267–279 (2014)CrossRefGoogle Scholar
  17. 17.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: International Conference on Machine Learning, pp. 1073–1080. ACM (2009)Google Scholar
  18. 18.
    Scrucca, L., Fop, M., Murphy, T.B., et al.: mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models. R. J. 8(1), 289–317 (2016)CrossRefGoogle Scholar
  19. 19.
    Franti, P., Virmajoki, O., Hautamaki, V.: Fast Agglomerative Clustering Using a k-Nearest Neighbor Graph. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1875–1881 (2006)CrossRefGoogle Scholar
  20. 20.
    Rand, W.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)CrossRefGoogle Scholar
  21. 21.
    Strehl, A., Ghosh, J.: Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(3), 583–617 (2003)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jiayuan Wang
    • 1
  • Tanghuai Fan
    • 1
    Email author
  • Zhifeng Xie
    • 1
  • Xi Zhang
    • 1
  • Jia Zhao
    • 1
  1. 1.School of Information EngineeringNanchang Institute of TechnologyNanchangChina

Personalised recommendations