Skip to main content

Performance Studies of Nocturnal Cooling: The State of the Art

  • Chapter
  • First Online:
Nocturnal Cooling Technology for Building Applications

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 335 Accesses

Abstract

Various systems of nocturnal cooling have been studied for building applications. However, these days, urbanisation has become a global phenomenon which affects energy usage and outdoor comfort. Thus, with the growing trend of population and land scarcity, a new angle of nocturnal cooling approach should be explored in meeting the demand of urban climate and cities. The research attempts to characterise the underlying physical mechanism of nocturnal cooling of cities is necessary. This should be governed by the evolution of the thermal state and many thermal-driven issues in the cities. Therefore, the design tool of nocturnal cooling of urban climate is pivotal in order to improve the microclimate behaviour of cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Lu, P. Xu, H. Wang, T. Yang, J. Hou, Cooling potential and applications prospects of passive radiative cooling in buildings: the current state-of-the-art. Renew. Sustain. Energy Rev. 65, 1079–1097 (2016). https://doi.org/10.1016/j.rser.2016.07.058

    Article  Google Scholar 

  2. S. Vall, A. Castell, Radiative cooling as low-grade energy source: a literature review. Renew. Sustain. Energy Rev. 77, 803–820 (2017). https://doi.org/10.1016/j.rser.2017.04.010

    Article  Google Scholar 

  3. A.R. Gentle, G.B. Smith, Optimized infra-red spectral response of surfaces for sub-ambient sky cooling as a function of humidity and operating temperature, in ed. by R.B. Wehrspohn, A. Gombert A (2010), p. 77250Z. https://doi.org/10.1117/12.853218

  4. J. Khedari, J. Waewsak, S. Thepa, J. Hirunlabh, Field investigation of night radiation cooling under tropical climate. Renew. Energy 20(2), 183–193 (2009)

    Article  Google Scholar 

  5. R.H.B. Exell, The atmospheric radiation climate of Thailand. Sol. Energy 21, 73–79 (1978). https://doi.org/10.1016/0038-092X(78)90032-4

    Article  Google Scholar 

  6. Z. Qingyuan, L. Yu, Potentials of passive cooling for passive design of residential buildings in China. Energy Procedia 57, 1726–1732 (2014)

    Article  Google Scholar 

  7. O. Sikula, P. Vojkůvková, J. Šíma, J. Plášek, G. Gebauer, Hybrid roof panels for night cooling and solar energy utilization in buildings. Energy Procedia 74, 177–183 (2015)

    Article  Google Scholar 

  8. J. Sima, O. Sikula, K. Kosutova, J. Plasek, Theoretical evaluation of night sky cooling in the Czech Republic. Energy Procedia 48, 645–653 (2014). https://doi.org/10.1016/j.egypro.2014.02.075

    Article  Google Scholar 

  9. U. Eicker, A. Dalibard, Photovoltaic–thermal collectors for night radiative cooling of buildings. Sol. Energy 85, 1322–1335 (2011). https://doi.org/10.1016/j.solener.2011.03.015

    Article  Google Scholar 

  10. A.Y.T. Al-Zubaydi, W.J. Dartnall, A. Dowd, Design, construction and calibration of an instrument for measuring the production of chilled water by the combined effects of evaporation and night sky radiation, in Proceedings of the International Mechanical Engineering Conference and Exposition (IMECE 2012), Houston, TX, USA (2012)

    Google Scholar 

  11. A.Y.T. Al-Zubaydi, W.J. Dartnall, Design and modelling of water chilling production system by the combined effects of evaporation and night sky radiation. J. Renew. Energy, 1–8 (2014). http://dx.doi.org/10.1155/2014/624502

  12. W. Lin, Z. Ma, M.I. Sohel, P. Cooper, Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials. Energy Convers. Manag. 88, 218–230 (2014)

    Article  Google Scholar 

  13. P. Vangtook, S. Chirarattananon, Application of radiant cooling as a passive cooling option in hot humid climate. Build. Environ. 42(2), 543–556 (2007)

    Article  Google Scholar 

  14. H. Hay, J. Yellot, Natural cooling with roof pond and moveable insulation. ASHRAE Trans. 75, 165–177 (1969)

    Google Scholar 

  15. H.H. Skytherm, Design evaluation skytherm production research, in Proceedings of 3rd Annual Solar Heating and Cooling R&D Branch Contractors’ Meeting (1978)

    Google Scholar 

  16. B. Givoni, Indoor temperature reduction by passive cooling systems. Sol. Energy 85(8), 1692–1726 (2011)

    Article  Google Scholar 

  17. B. Givoni, Solar heating and night radiation cooling by a roof radiation trap. Energy Build. 1(2), 141–145 (1977)

    Article  Google Scholar 

  18. D. Michell, K.L. Biggs, Radiation cooling of buildings at night. Appl. Energy 5(79), 263–275 (1979)

    Article  Google Scholar 

  19. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975). https://doi.org/10.1016/0038-092X(75)90062-6

    Article  Google Scholar 

  20. B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, G. Troise, Nocturnal and diurnal performances of selective radiators. Appl. Energy 3, 267–286 (1977). https://doi.org/10.1016/0306-2619(77)90015-0

    Article  Google Scholar 

  21. A.W. Harrison, M.R. Walton, Radiative cooling of TiO2 white paint. Sol. Energy 20(2), 185–188 (1978)

    Article  Google Scholar 

  22. M. Martin, P. Berdahl, Summary of results from the spectral and angular sky radiation measurement program. Sol. Energy 33(84), 241–252 (1984)

    Article  Google Scholar 

  23. T.S. Eriksson, S.J. Jiang, C.G. Granqvist, Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive RF-sputtering. Sol. Energy Mater. 12, 319–325 (1985)

    Article  Google Scholar 

  24. M.D. Diatezua, P.A. Thiry, R. Caudano, Characterization of silicon oxynitride multilayered systems for passive radiative cooling application. Vacuum 46(8), 1121–1124 (1995)

    Article  Google Scholar 

  25. C.G. Granqvist, A. Hjortsberg, T.S. Eriksson, Radiative cooling with selectively infrared-emitting solid film. J. Appl. Phys. 90, 187–190 (1982). https://doi.org/10.1063/1.331487

    Article  Google Scholar 

  26. B.A. Kimball, Cooling performance and efficiency of night sky radiators. Sol. Energy 34(1), 19–33 (1985)

    Article  Google Scholar 

  27. C.N. Awanou, Radiative cooling by a diode roof. Sol. Wind Technol. 3, 163–172 (1986). https://doi.org/10.1016/0741-983X(86)90030-5

    Article  Google Scholar 

  28. C.I. Ezekwe, Nocturnal radiation measurements in Nigeria. Sol. Energy 37(1), 1–6 (1986)

    Article  Google Scholar 

  29. C.I. Ezekwe, Performance of a heat pipe assisted night sky radiative cooler. Energy Convers. Manag. 30, 403–408 (1990). https://doi.org/10.1016/0196-8904(90)90041-v

    Article  Google Scholar 

  30. M. Matsuta, S. Terada, H. Ito, Solar heating and radiative cooling using a solar collector-sky radiator with a spectrally selective surface. Sol. Energy 39, 183–186 (1987)

    Article  Google Scholar 

  31. S. Ito, N. Miura, Studies of radiative cooling systems for storing thermal energy. J. Sol. Energy Eng. 111, 251–256 (1989). https://doi.org/10.1115/1.3268315

    Article  Google Scholar 

  32. A. Argiriou, M. Santamouris, D.N. Assimakopoulos, Assessment of the radiative cooling potential of a collector using hourly weather data. Energy 19(8), 879–888 (1994)

    Article  Google Scholar 

  33. A.H.H. Ali, I.M.S. Taha, I.M. Ismail, Cooling of water flowing through a night sky radiator. Sol. Energy 55, 235–253 (1995). https://doi.org/10.1016/0038-092x(95)00030-u

    Article  Google Scholar 

  34. P. Berdahl, M. Martin, F. Sakkal, Thermal performance of radiative cooling panels. Int. J. Heat Mass Transf. 26, 871–880 (1983). https://doi.org/10.1016/s0017-9310(83)80111-2

    Article  MATH  Google Scholar 

  35. Y. Etzion, E. Erell, Thermal storage mass in radiative cooling systems. Build. Environ. 26(4), 389–394 (1991)

    Article  Google Scholar 

  36. E. Erell, Y. Etzion, Analysis and experimental verification of an improved cooling radiator. Renew. Energy 16, 700–703 (1999)

    Article  Google Scholar 

  37. E. Erell, Y. Etzion, Radiative cooling of buildings with flat-plate solar collectors. Build. Environ. 35, 297–305 (2000). https://doi.org/10.1016/S0360-1323(99)00019-0

    Article  Google Scholar 

  38. J. Rincon, N. Almao, E. González, Experimental and numerical evaluation of a solar passive cooling system under hot and humid climatic conditions. Sol. Energy 71(1), 71–80 (2001)

    Article  Google Scholar 

  39. M.G. Meir, J.B. Rekstad, O.M. Løvvik, A study of a polymer-based radiative cooling system. Sol. Energy 73, 403–417 (2002). https://doi.org/10.1016/S0038-092X(03)

    Article  Google Scholar 

  40. R.C. Bourne, C. Carew, Design and implementation of a night roof-spray storage cooling system, in Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Washington, DC, USA (1996)

    Google Scholar 

  41. M.A. Al-Nimr, Z. Kodah, B. Nassar, A theoretical and experimental investigation of a radiative cooling system. Sol. Energy 63(6), 367–373 (1998)

    Article  Google Scholar 

  42. D.S. Parker, J.R. Sherwin, Evaluation of the Nightcool Nocturnal Radiation Cooling Concept: Annual Performance Assessment in Scale Test Buildings Stage Gate 1B (2008)

    Google Scholar 

  43. T. Prommajak, J. Phonruksa, S. Pramuang, Passive cooling of air at night by the nocturnal radiation in Loei, Thailand. Int. J. Renew. Energy 3, 33–40 (2008)

    Google Scholar 

  44. N.V. Ogueke, C.C. Onwuachu, E.E. Anyanwu, Experimental study of long-wave night sky radiation in Owerri, Nigeria for passive cooling application, in Low energy architecture. World Renewable Energy Congress (2011), pp. 2110–2017. http://www.ep.liu.se/ecp/057/vol8/048/ecp57vol8_048.pdf

  45. J. Hollick, Nocturnal radiation cooling tests. Energy Procedia 30, 930–936 (2012). https://doi.org/10.1016/j.egypro.2012.11.105

    Article  Google Scholar 

  46. T.N. Anderson, M. Duke, J.K. Carson, Performance of an unglazed solar collector for radiant cooling, in Proceedings of Australian Solar Cooling 2013 Conference, Sydney (2013)

    Google Scholar 

  47. X. Xu, R. Niu, G. Feng, An experimental and analytical study of a radiative cooling system with flat plate collectors. Procedia Eng. 121, 1574–1581 (2015)

    Article  Google Scholar 

  48. A.H.H. Ali, Passive cooling of water at night in uninsulated open tank in hot arid areas. Energy Convers. Manag. 48(1), 93–100 (2007)

    Article  Google Scholar 

  49. A. Dimoudi, A. Androutsopoulos, The cooling performance of a radiator based roof component. Sol. Energy 80, S1039–S1047 (2006)

    Article  Google Scholar 

  50. H.S. Bagiorgas, G. Mihalakakou, Experimental and theoretical investigation of a nocturnal radiator for space cooling. Renew. Energy 33, 1220–1227 (2008). https://doi.org/10.1016/j.renene.2007.04.015

    Article  Google Scholar 

  51. J.A.F. Tevar, S. Castaño, A.M. Garrido, M.R. Heras, J. Pistono, Modelling and experimental analysis of three radio convective panels for night cooling. Energy Build. 107, 37–48 (2015). https://doi.org/10.1016/j.enbuild.2015.07.027

    Article  Google Scholar 

  52. M. Falt, M. Zevenhoven, Radiative cooling in Northern Europe using a skylight. J. Energy Power. Eng., 692–702 (2011)

    Google Scholar 

  53. G. Heidarinejad, M.F. Farahani, S. Delfani, Investigation of a hybrid system of nocturnal radiative cooling and direct evaporative cooling. Build. Environ. 45, 1521–1528 (2010)

    Article  Google Scholar 

  54. M.F. Farahani, G. Heidarinejad, S. Delfani, A two-stage system of nocturnal radiative and indirect evaporative cooling for conditions in Tehran. Energy Build. 42, 2131–2138 (2010). https://doi.org/10.1016/j.enbuild.2010.07.003

    Article  Google Scholar 

  55. A.H.H. Ali, Desiccant enhanced nocturnal radiative cooling-solar collector system for air comfort application in hot arid areas. Sustain. Energy Technol. Asses. 1, 54–62 (2013)

    Google Scholar 

  56. S. Zhang, J. Niu, Cooling performance of nocturnal radiative cooling combined with microencapsulated phase change material (MPCM) slurry storage. Energy Build. 54, 122–130 (2012). https://doi.org/10.1016/j.enbuild.2012.07.041

    Article  Google Scholar 

  57. Y. Man, H. Yang, J.D. Spitler, Z. Fang, Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings. Appl. Energy 88(11), 4160–4171 (2011)

    Article  Google Scholar 

  58. Y. Man, H. Yang, Y. Qu, Z. Fang, A novel nocturnal cooling radiator used for supplemental heat sink of active cooling system. Procedia Eng. 52, 300–308 (2015). https://doi.org/10.1016/j.proeng.2015.08.1072

    Article  Google Scholar 

  59. M.I. Sohel, Z. Ma, P. Cooper, J. Adams, L. Niccol, A feasibility study of night radiative cooling of BIPVT in climatic conditions of major Australian cities, in Proceedings of Asia-Pacific Solar Research Conference (2014)

    Google Scholar 

  60. Y. Cui, Y. Wang, L. Zhu, Performance analysis on a building-integrated solar heating and cooling panel. Renew. Energy 74, 627–632 (2015)

    Article  Google Scholar 

  61. K. Panchabikesan, K. Vellaisamy, V. Ramalingam, Passive cooling potential in buildings under various climatic conditions in India. Renew. Sustain. Energy Rev. 78, 1236–1252 (2017)

    Article  Google Scholar 

  62. M. Fiorentini, P. Cooper, Z. Ma, Development and optimization of an innovative HVAC system with integrated PVT and PCM thermal storage for a net-zero energy retrofitted house. Energy Build. 94, 21–32 (2015)

    Article  Google Scholar 

  63. Y. Cui, Y. Wang, Q. Huang, S. Wei, Effect of radiation and convection heat transfer on cooling performance of radiative panel. Renew. Energy 99, 10–17 (2016)

    Article  Google Scholar 

  64. B. Zhao, M. Hu, X. Ao, G. Pei, Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Appl. Energy 205, 626–634 (2017)

    Article  Google Scholar 

  65. M. Hu, B. Zhao, J. Li, Y. Wang, G. Pei, Preliminary thermal analysis of a combined photovoltaic–photothermic–nocturnal radiative cooling system. Energy 137, 419–430 (2017)

    Article  Google Scholar 

  66. D. Aviv, F. Meggers, Cooling oculus for desert climate—dynamic structure for evaporative downdraft and night sky cooling. Energy Procedia 122, 1123–1128 (2017)

    Article  Google Scholar 

  67. M. Hu, G. Pei, Q. Wang, J. Li, Y. Wang, J. Ji, Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system. Appl. Energy 179, 899–908 (2016). https://doi.org/10.1016/j.apenergy.2016.07.066

    Article  Google Scholar 

  68. M.K. Kim, H. Leibundgut, Advanced airbox cooling and dehumidification system connected with a chilled ceiling panel in series adapted to hot and humid climates. Energy Build. 85, 72–78 (2014)

    Article  Google Scholar 

  69. S. Cui, M.K. Moon, K. Papadikis, Performance evaluation of hybrid radiant cooling system integrated with decentralized ventilation system in hot and humid climates. Procedia Eng. 205, 1245–1252 (2017)

    Article  Google Scholar 

  70. M. Hanif, T.M.I. Mahlia, A. Zare, T.J. Saksahdan, H.S.C. Metselaar, Potential energy savings by radiative cooling system for a building in tropical climate. Renew. Sustain. Energy Rev. 32(5), 642–650 (2014)

    Article  Google Scholar 

  71. J. Du, M. Chan, D. Pan, L. Shang, S. Deng, The impacts of daytime external envelope heat gain/storage on the night time cooling load and the related mitigation measures in a bedroom in the subtropics. Energy Build. 118, 70–81 (2016)

    Article  Google Scholar 

  72. C.A. Okoronkwo, K.N. Nwigwe, N.V. Ogueke, E.E. Anyanwu, An experimental investigation of the passive cooling of a building using night time radiant cooling. Int. J. Green Energy 11(10), 1072–1083 (2014)

    Article  Google Scholar 

  73. A.B. Besir, E. Cuce, Green roofs and facades: a comprehensive review. Renew. Sustain. Energy Rev. 82(1), 915–939 (2018)

    Article  Google Scholar 

  74. L. Jiang, M. Tang, Thermal analysis of extensive green roofs combined with night ventilation for space cooling. Energy Build. 156, 238–249 (2017)

    Article  Google Scholar 

  75. M. Zeyghami, D.Y. Goswami, E. Stefanakos, A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 178, 115–128 (2018). https://doi.org/10.1016/j.solmat.2018.01.015

    Article  Google Scholar 

  76. C.Y. Tso, K.C. Chan, C.Y.H. Chao, A field investigation of passive radiative cooling under Hong Kong’s climate. Renew. Energy 106, 52–61 (2017)

    Article  Google Scholar 

  77. B.B. Naghshine, A. Saboonchi, Optimized thin film coatings for passive radiative cooling applications. Opt. Commun. 410, 416–423 (2018). https://doi.org/10.1016/j.optcom.2017.10.047

    Article  Google Scholar 

  78. C.G. Granqvist, A. Hjortsberg, Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films. J. Appl. Phys. 52, 4205–4220 (1981). https://doi.org/10.1063/1.329270

    Article  Google Scholar 

  79. G. Mihalakakou, A. Ferrante, J.O. Lewis, The cooling potential of a metallic nocturnal radiator. Energy Build. 28, 251–256 (1998)

    Article  Google Scholar 

  80. D.R. Satterlund, An improved equation for estimating long-wave radiation from the atmosphere. Water Resour. Res. 15, 1649 (1979). https://doi.org/10.1029/wr015i006p01649

    Article  Google Scholar 

  81. K.D. Dobson, G. Hodes, Y. Mastai, Thin semiconductor films for radiative cooling applications. Sol. Energy Mater. Sol. Cells 80, 283–296 (2003). https://doi.org/10.1016/j.solmat.2003.06.007

    Article  Google Scholar 

  82. A.R. Gentle, G.B. Smith, Angular selectivity: impact on optimized coatings for night sky radiative cooling, in SPIE Nano Science + Engineering International Society for Optics and Photonics, 74040J–74040J-8 (2009)

    Google Scholar 

  83. E. Hosseinzadeh, H. Taherian, An experimental and analytical study of a radiative cooling system with unglazed flat plate collectors. Int. J. Green Energy 9(8), 766–779 (2012)

    Article  Google Scholar 

  84. Y. Man, H. Yang, Q. Yunxia, Z. Fang, A novel nocturnal cooling radiator used for supplemental heat sink of active cooling system. Procedia Eng. 121, 300–308 (2015)

    Article  Google Scholar 

  85. B. Zhao, M. Hu, X. Ao, Q. Xuan, G. Pei, Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling. Sol. Energy Mater. Sol. Cells 178, 266–272 (2018). https://doi.org/10.1016/j.solmat.2018.01.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mardiana Idayu Ahmad .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, M.I., Jarimi, H., Riffat, S. (2019). Performance Studies of Nocturnal Cooling: The State of the Art. In: Nocturnal Cooling Technology for Building Applications . SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-5835-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5835-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5834-0

  • Online ISBN: 978-981-13-5835-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics