Skip to main content

Synergy Between Sentinel-MSI and Landsat-OLI to Support High Temporal Frequency for Soil Salinity Monitoring in an Arid Landscape

  • Chapter
  • First Online:
Research Developments in Saline Agriculture

Abstract

The free-available data acquired with multispectral instruments (MSI) onboard Sentinel-2 satellites and Operational Land Imager (OLI) installed on Landsat 8 satellite significantly advances the virtual constellation paradigm for Earth observing and monitoring with medium spatial resolutions ensuring a revisiting interval time less than 5 days. Although these instruments are designed to be similar, they have different spectral response functions and different spectral and spatial resolutions, and, therefore, their data probably cannot be reliably used together. In this chapter, we analyzed exclusively the impact of dissimilarities caused by spectral response functions between these two sensors for high temporal frequency for soil salinity dynamic monitoring in an arid landscape. Knowing that the shortwave infrared (SWIR) spectral bands are the most appropriate for soil salinity discrimination, modeling, and monitoring, only the land surface reflectances in the SWIR spectral bands are considered and converted to the Soil Salinity and Sodicity Index (SSSI) and to the semiempirical predictive model (SEPM) for soil salinity mapping. These three products were compared, and the impact of the sensors’ (OLI and MSI) spectral response function differences was quantified. To achieve these, analysis was performed on two pairs of images acquired in July 2015 and August 2017 with 1-day difference between each other over the same study area, which is characterized by several soil salinity classes (i.e., extreme, very high, high, moderate, low, and nonsaline). These images were not cloudy, without shadow, and not contaminated by cirrus. They were radiometrically and atmospherically corrected, and bi-directional reflectance difference factors (BRDF) were normalized. To generate data for analysis, similarly to Landsat-OLI, Sentinel-MSI images were resampled in 30 m pixel size considering UTM projection and WGS84 datum. The comparisons of the derived products were undertaken using regression analysis (p ≤ 0.05) and root mean square difference (RMSD). In addition to the visual analysis, kappa coefficient was also used to measure the degree of similarity between the derived salinity maps using SEPM. The results obtained demonstrate that the two used pair’s dataset, acquired during 2 different years over a wide range of soil salinity degrees (2.6 ≤ EC-Lab ≤ 600 dS m−1), had very significant fits (R2 of 0.99 for the SWIR land surface reflectances and R2 ≥ 0.95 for SSSI and SEPM). Moreover, excellent agreement was observed between the two sensor products, yielding RMSD values less than 0.012 (reflectance units) for the SWIR bands and less than 0.006 for SSSI. For the SEPM, the calculated RMSD vary between 0.12 and 2.65 dS m−1, respectively, for nonsaline and extreme salinity classes, reflecting relative errors varying between 0.046 and 0.005 for the considered soil salinity classes. Statistical similarity between the derived salinity maps based on SEPM using kappa coefficient revealed an excellent agreement (0.94). Therefore, MSI and OLI sensors can be used jointly to characterize and to monitor accurately the soil salinity and its dynamic in time and space in arid landscape, provided that rigorous preprocessing issues (sensor calibration, atmospheric corrections, and BRDF normalization) must be addressed before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexakis DD, Daliakopoulos IN, Panagea LS, Tsanis IK (2016) Assessing soil salinity using WorldView-2 multispectral images in Timpaki, Crete, Greece. Geocarto Int 33(4):321–338. https://doi.org/10.1080/10106049.2016.1250826

    Article  Google Scholar 

  • Bannari A, Huete AR, Morin D, Zagolski F (1996) Effets de la couleur et de la brillance du sol sur les indices de végétation. Int J Remote Sens 17(10):1885–1906

    Article  Google Scholar 

  • Bannari A, Teillet PM, Richardson G (1999) Nécessité de l’étalonnage radiométrique et standardisation des données de télédétection. J Canadien de Télédétection 25:45–59

    Google Scholar 

  • Bannari A, Teillet PM, Landry R (2004) Comparaison des réflectances des surfaces naturelles dans les bandes spectrales homologues des capteurs TM de Landsat-5 et TME+ de Landsat-7. Revue Télédétection 4(3):263–275

    Google Scholar 

  • Bannari A, Guedon AM, El-Harti A, Cherkaoui FZ, El-Ghmari A (2008) Characterization of slight and moderate saline and sodic soils in irrigated agricultural land using simulated data of ALI (EO-1) sensor. Commun Soil Sci Plant Anal 39:2795–2811

    Article  CAS  Google Scholar 

  • Bannari A, Guedon AM, El-Ghmari A (2016) Mapping slight and moderate saline soils in irrigated agricultural land using advanced land imager sensor (EO-1) data and semi-empirical models. Commun Soil Sci Plant Anal 47:1883–1906

    CAS  Google Scholar 

  • Bannari A, El-Battay A, Hameid N, Tashtoush F (2017a) Salt-affected soil mapping in an arid environment using semi-empirical model and Landsat-OLI data. Adv Remote Sens 6:260–291

    Article  Google Scholar 

  • Bannari A, Shahid SA, El-Battay A, Alshankiti A, Hameid NA, Tashtoush F (2017b) Potential of worldview-3 data for soil salinity modeling and mapping in an arid environment. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS-2017), Fort Worth, TX, USA, 23–28 July 2017, pp 1585–1588

    Google Scholar 

  • Bannari A, El-Battay A, Bannari R, Rhinane H (2018) Sentinel-MSI VNIR and SWIR bands sensitivity analysis for soil salinity discrimination in an arid landscape. Remote Sens 10(6):855. https://doi.org/10.3390/rs10060855

    Article  Google Scholar 

  • Ben-Dor E (2002) Quantitative remote sensing of soil properties. Adv Agron 75:173–243

    Article  CAS  Google Scholar 

  • Ben-Dor E, Banin A (1994) Visible and near-infrared (0.4–1.1 μm) analysis of arid and semi-arid soils. Remote Sens Environ 48(3):261–274. https://doi.org/10.1016/0034-4257(94)90001-9

    Article  Google Scholar 

  • Ben-Dor E, Irons JR, Epema GF (2003) Soil reflectance. In: Rencz AN (ed) Remote sensing for the earth sciences: manual of remote sensing, vol 3, 3rd edn. John Wiley & Son Inc., New York, pp 111–188

    Google Scholar 

  • Ben-Dor E, Metternicht G, Goldshleger N, Mor E, Mirlas V, Basson U (2009) Review of remote sensing-based methods to assess soil salinity. Chapter 13. In: Metternicht G, Zinck JA (eds) Remote sensing of soil salinization: impact on land management. CRC Press Taylor and Francis Group, Boca Raton, pp 39–60

    Google Scholar 

  • Castro HF, Classen AT, Austin EE, Norby RJ, Schad CW (2010) Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol, American Society for Microbiology 76(4):999–1007

    Article  CAS  Google Scholar 

  • Chapman JE, Rothery DA, Francis PW, Pontual A (1989) Remote sensing of evaporite mineral zonation in salt flats (salars). Int J Remote Sens 10:245–255. https://doi.org/10.1080/01431168908903860

    Article  Google Scholar 

  • Claverie M, Vermote EF, Franch B, Masek JG (2015) Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens Environ 169:390–403. https://doi.org/10.1016/j.rse.2015.08.030

    Article  Google Scholar 

  • Dagar JC, Sharma PC, Chaudhari SK, Jat HS, Ahamad S (2016) Climate change vis-a-vis saline agriculture: impact and adaptation strategies. Chapter. In: Dagar JC, Sharma PC, Sharma DK, Singh AK (eds) Innovative saline agriculture. Springer India, pp 5–55, 518 pages. ISBN 978-81-322-2768-7, https://doi.org/10.1007/978-81-322-2770-0

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review. WIREs Clim Change 2:45–65

    Article  Google Scholar 

  • Doomkamp JC, Brunsden D, Jones DKC (1980) Geology, geomorphology and pedology of Bahrain. Geo-Abstracts Ltd., University of East Anglia, Norwich, 443p

    Google Scholar 

  • Drake NA (1995) Reflectance spectra of evaporite minerals (400–2500 nm): applications for remote sensing. Int J Remote Sens 16:55–71. https://doi.org/10.1080/01431169508954576

    Article  Google Scholar 

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P et al (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36. https://doi.org/10.1016/j.rse.2011.11.026

    Article  Google Scholar 

  • Elagib NA, Abdu SAA (1997) Climate variability and aridity in Bahrain. J Arid Environ 36:405–419

    Article  Google Scholar 

  • El-Battay A, Bannari A, Hameid NA, Abahussain AA (2017) Comparative study among different semi-empirical models for soil salinity prediction in an arid environment using OLI Landsat-8 Data. Adv Remote Sens 6:23–39

    Article  Google Scholar 

  • El-Harti A, Lhissoua R, Chokmani K, Ouzemou J, Hassouna M, Bachaouia EM, El-Ghmari A (2016) Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. Int J Appl Earth Obs Geoinf 50:64–73

    Article  Google Scholar 

  • Fan XW, Liu YB, Tao JM, Weng YL (2015) Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression. Remote Sens 7(1):488–511. https://doi.org/10.3390/rs70100488

    Article  Google Scholar 

  • FAO (2005) Management of irrigation-induced salt-affected soils. Available online: http://www.fao.org/tempref/agl/agll/docs/salinity_brochure_eng.pdf. Accessed 18 Mar 2017

  • FAO (2015) Bahrain: geography, climate and population. Available online: http://www.fao.org/nr/water/aquastat/countries_regions/bahrain/index.stm. Accessed 18 Mar 2017

  • Fernandez-Buces N, Siebe C, Cram S, Palacio J (2006) Mapping soil salinity using a combined spectral res- ponse index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico. J Arid Environ 65(4):644–667

    Article  Google Scholar 

  • Flood N (2017) Comparing Sentinel-2A and Landsat 7 and 8 using surface reflectance over Australia. Remote Sens 9(7):659. https://doi.org/10.3390/rs9070659

    Article  Google Scholar 

  • Gascon F, Bouzinac C, Thépaut O, Jung M, Francesconi B, Louis J, Lonjou V, Lafrance B, Massera S, Gaudel-Vacaresse A, Languille F, Alhammoud B, Viallefont F, Pflug B, Bieniarz J, Clerc S, Pessiot L, Trémas T, Cadau E, De Bonis R, Isola C, Martimort P, Fernandez V (2017) Copernicus sentinel-2 calibration and products validation status. Remote Sens 9(6):584. https://doi.org/10.3390/rs9060584

    Article  Google Scholar 

  • Goldshleger N, Ben-Dor E, Benyamini Y, Agassi M, Blumber D (2001) Characterization of soil’s structural crust by spectral reflectance in the SWIR region (1.2–2.5 μm). Terra Nova 13:12–17

    Article  CAS  Google Scholar 

  • Goosens R, El Badawi M, Ghabour T, De Dapper M (1998) A simulated model to monitor the soil salinity in irrigated arable land in arid areas based upon remote sensing and GIS. EARSeL Adv Remote Sens 2:165–171

    Google Scholar 

  • Hashem M, El-Khattib N, El-Mowelhi M, Abd El-Salam A (1997) Desertification and land degradation using high resolution satellite data in the Nile Delta, Egypt. Proceedings of IGARSS-1997, Singapore, pp 197–99

    Google Scholar 

  • Hawari F (2002) Spectroscopy of evaporates. Per Mineral 71(2):191–200

    Google Scholar 

  • Hedley J, Roelfsema C, Koetz B, Phinn S (2012) Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection. Remote Sens Environ 120:145–155. https://doi.org/10.1016/j.rse.2011.06.028

    Article  Google Scholar 

  • Irons JR, Dwyer JL, Barsi JA (2012) The next Landsat satellite: the Landsat data continuity mission. Remote Sens Environ 122:11–21. https://doi.org/10.1016/j.rse.2011.08.026

    Article  Google Scholar 

  • Jucevica E, Melecis V (2006) Global warming affect collembola community: a long-term study. Pedobiologi 50:177–184

    Article  Google Scholar 

  • Knight EJ, Kvaran G (2014) Landsat-8 operational land imager design, characterization and performance. Remote Sens 6(11):10286–10305. https://doi.org/10.3390/rs61110286

    Article  Google Scholar 

  • Kurylyk B, MacQuarrie K (2013) The uncertainty associated with estimating future groundwater recharge: a summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. J Hydrol 492:244–253

    Article  Google Scholar 

  • Leone AP, Menenti M, Buondonno A, Letizia A, Maffei C, Sorrentino G (2007) A field experiment on spectrometry of crop response to soil salinity. Agric Water Manag 89(1–2):39–48

    Article  Google Scholar 

  • Li J, Roy DP (2017) A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens 9(9):902. https://doi.org/10.3390/rs9090902

    Article  Google Scholar 

  • Li S, Ganguly S, Dungan JL, Wang WL, Nemani RR (2017) Sentinel-2 MSI radiometric characterization and cross-calibration with Landsat-8 OLI. Adv Remote Sens 6:147–159. https://doi.org/10.4236/ars.2017.62011

    Article  Google Scholar 

  • Loveland TR, Dwyer JL (2012) Landsat: building a strong future. Remote Sens Environ 122:22–29. https://doi.org/10.1016/j.rse.2011.09.022

    Article  Google Scholar 

  • Mandal A, Neenu S (2012) Impact of climate change on soil biodiversity: a review. Agric Rev 33(4):283–292

    Google Scholar 

  • Mandanici E, Bitelli G (2016) Preliminary comparison of Sentinel-2 and Landsat 8 imagery for a combined use. Remote Sens 8(12):1014. https://doi.org/10.3390/rs8121014

    Article  Google Scholar 

  • Markham B, Barsi J, Kvaran G, Ong L, Kaita E, Biggar S, Czapla-Myers J, Mishra N, Helder D (2014) Landsat-8 operational land imager radiometric calibration and stability. Remote Sens 6(12):12275–12308. https://doi.org/10.3390/rs61212275

    Article  Google Scholar 

  • McBratney A, Field DJ, Koch A (2014) The dimensions of soil security. Geoderma 213:203–213

    Article  Google Scholar 

  • Metternicht G, Alfred Zinck JA (2009) Spectral behavior of salt types. Chapter 2. In: Metternicht G, Zinck JA (eds) A remote sensing of soil salinization: impact on land management. CRC Press Taylor and Francis Group, Boca Raton, p 21–37, 374 pages

    Chapter  Google Scholar 

  • Metternicht GI, Zinck JA (1997) Spatial discrimination of salt- and sodium-affected soil surfaces. Int J Remote Sens 18:2571–2586

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20. https://doi.org/10.1016/S0034-4257(02)00188-8

    Article  Google Scholar 

  • Myneni RB, Asrar G (1994) Atmospheric effects and spectral vegetation indices. Remote Sens Environ 47(3):390–402. https://doi.org/10.1016/0034-4257(94)90106-6

    Article  Google Scholar 

  • Naing OO, Boonthaiiwai AC, Saenjan P (2013) Food security and socio-economic impacts of soil salinization in Northeast Thailand. Int J Environ Rural Dev 4:76–81

    Google Scholar 

  • NASA (2014) Landsat-8 Instruments. Available on line: http://www.nasa.gov/mission_pages/landsat/spacecraft/index.html. Accessed 18 Mar 2018

  • NASA (2015) Operational Land Imager (OLI). Available on line: http://landsat.gsfc.nasa.gov/?p=5447. Accessed 18 Mar 2018

  • Nawar S, Buddenbaum H, Hill J, Kozak J (2014) Modeling and mapping of soil salinity with Reflectance Spectroscopy and Landsat Data using two quantitative methods (PLSR and MARS). Remote Sens 6(11):10813–10834. https://doi.org/10.3390/rs61110813

    Article  Google Scholar 

  • Nawar, Buddenbaum H, Hill J (2015) Digital mapping of soil properties using multivariate statistical analysis and ASTER Data in an Arid Region. Remote Sens 7(2):1181–1205. https://doi.org/10.3390/rs70201181

    Article  Google Scholar 

  • Odeh IOA, Onus A (2008) Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia. Environ Manag 42:265–278

    Article  Google Scholar 

  • Pahlevan N, Lee Z, Wei J, Schaaf CB, Schott JR, Berk A (2014) On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens Environ 154:272–284. https://doi.org/10.1016/j.rse.2014.08.001

    Article  Google Scholar 

  • Pastick NJ, Wylie BK, Wu Z (2018) Spatiotemporal analysis of Landsat-8 and Sentinel-2 data to support monitoring of dryland ecosystems. Remote Sens 10(5):791. https://doi.org/10.3390/rs10050791

    Article  Google Scholar 

  • PCI-Geomatica (2018) Using PCI software, Richmond Hill, Ontario, 540 pages

    Google Scholar 

  • Qi J (1993) Compositing multitemporal remote sensing data. Ph.D dissertation, Department of Soil and Water Science, University of Arizona, Tucson, Arizona, 200 pages

    Google Scholar 

  • Rahmati M, Hamzehpour N (2017) Quantitative remote sensing of soil electrical conductivity using ETM+ and ground measured data. Int J Remote Sens 38:123–140

    Article  Google Scholar 

  • Rhoades JD, Chanduvi F, Lesch S (1999) Soil salinity assessment: methods and interpretation of electrical conductivity measurements. FAO irrigation and drainage report No. 57, Rome. 165 pages. Available on web: http://www.fao.org/docrep/019/x2002e/x2002e.pdf. Accessed 6 June 2018

  • Roy DP, Wulder M, Loveland T, Woodcock C, Allen R, Anderson M, Helder D, Irons J, Johnson D, Kennedy R, Scambos T, Schaaf CB, Schott JR, Sheng Y, Vermote EF, Belward AS, Bindschadler R, Cohen WB, Gao F, Hipple JD, Hostert P, Huntington J, Justice CO, Kilic A, Kovalskyy V, Lee ZP, Lymbumer L, Masek JG, McCorkel J, Shuai Y, Trezza R, Vogelmann J, Wynne RH, Zhu Z (2014) Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ 145:154–172. https://doi.org/10.1016/j.rse.2014.02.001

    Article  Google Scholar 

  • Roy D, Zhang H, Ju J, Gomez-Dans J, Lewis P, Schaaf C, Sun Q, Li J, Huang H, Kovalskyy V (2016) A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens Environ 176:255–271. https://doi.org/10.1016/j.rse.2016.01.023

    Article  Google Scholar 

  • Roy DP, Li J, Zhang HK, Yan L, Huang H, Li Z (2017) Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance. Remote Sens Environ 199:25–38. https://doi.org/10.1016/j.rse.2017.06.019

    Article  Google Scholar 

  • Santis IP (1996) Soil salinization and land desertification. Chapter. In: Rubio L, Calvo A (eds) Soil degradation and desertification in Mediterranean environments, JPublished by Geoforma, Logrofio, pp 105–129, 290 pages. ISBN 10: 8487779263 /ISBN 13: 9788487779268

  • Scudiero E, Skaggs TH, Corwin DL (2016) Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecol Indic 70:276–284

    Article  Google Scholar 

  • Shahid S, Al-Shankiti A (2013) Sustainable food production in marginal lands-case of GDLA Member Countries. Int Soil Water Conserv Res 1(1):24–38

    Article  Google Scholar 

  • Shahid SA, Behnassi M (2014) Climate change impacts in the Arab Region: Review of adaptation and mitigation potential and practices. Chapter 2. In: Behnassi M, Muteng’e MS, Ramachandran G, Shelat KN (eds) Vulnerability of agriculture, water and fisheries to climate change: toward sustainable adaptation strategies. Springer, pp 15–58, 336 pages. ISBN-13: 978-9401789615; DOI https://doi.org/10.1007/978-94-017-8962-2_2

    Google Scholar 

  • Shrestha RP (2006) Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degrad Dev 17:677–689

    Article  Google Scholar 

  • Skakun S, Roger JC, Vermote EF, Masek JG, Justice CO (2017) Automatic subpixel co-registration of Landsat-8 operational land imager and sentinel-2A multispectral instrument images using phase correlation and machine learning based mapping. Int J Digital Earth:1–17

    Google Scholar 

  • Stumpf A, Michéa D, Malet JP (2018) Improved co-registration of Sentinel-2 and Landsat-8 Imagery for earth surface motion measurements. Remote Sens 10:160. https://doi.org/10.3390/rs10020160

    Article  Google Scholar 

  • Teh S, Koh H (2016) Climate change and soil salinization: impact on agriculture, water and food security. Int J Agric, For Plant 2:1–9

    Google Scholar 

  • Teillet PM (1992) An algorithm for the radiometric and atmospheric correction of AVHRR data in the solar reflective channels. Remote Sens Environ 41:185–195. https://doi.org/10.1016/0034-4257(92)90077-W

    Article  Google Scholar 

  • Teillet P, Santer R (1991) Terrain elevation and sensor altitude dependence in a semi-analytical atmospheric code. Can J Remote Sens 17:36–44

    Google Scholar 

  • USDA-NRCS (2004) Soil survey laboratory methods manual. Soil Survey Investigations Report, No. 42 Version 4; 736 pages; R. Burt Edithor; USDA-NRCS, Washington, DC

    Google Scholar 

  • Van-der Werff H, Van-der Meer F (2016) Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote Sens 8(11):883. https://doi.org/10.3390/rs8110883

    Article  Google Scholar 

  • Verma KS, Saxena RK, Barthwal AK, Deshmukh SN (1994) Remote sensing technique for mapping salt affected soils. Int J Remote Sens 15(9):1901–1914

    Article  Google Scholar 

  • Vermote EF, Justice C, Claverie M, Franch B (2016) Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185:46–56. https://doi.org/10.1016/j.rse.2016.04.008

    Article  Google Scholar 

  • Visser H, De-Nijs T (2006) The map comparison kit. Environ Model Softw 21:346–358

    Article  Google Scholar 

  • Vuolo F, Zółtak M, Pipitone C, Zappa L, Wenng H, Immitzer M, Weiss M, Baret F, Atzberger C (2016) Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens 8(11):938. https://doi.org/10.3390/rs8110938

    Article  Google Scholar 

  • White R, Tunstall D, Henninger N (2002) An ecosystem approach to drylands: building support for new development policies. Information Policy Brief No. 1, World Research Institute, Washington DC, 14 pages

    Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313

    Article  Google Scholar 

  • Wu W, Al-Shafie WM, Mhaimeed AS, Ziadat F, Nangia V, Payne WB (2014) Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq. IEEE J Selected Topics Appl Earth Observ Remote Sens 7(11):4442–4452. https://doi.org/10.1109/JSTARS.2014.2360411

    Article  Google Scholar 

  • Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y (2015a) Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170:62–76. https://doi.org/10.1016/j.rse.2015.09.001

    Article  Google Scholar 

  • Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP (2015b) The global Landsat archive: status, consolidation, and direction. Remote Sens Environ 185:271–283. https://doi.org/10.1016/j.rse.2015.11.032

    Article  Google Scholar 

  • Yan L, Roy DP, Li Z, Zhang HK, Huang H (2018) Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology. Remote Sens Environ 215:495–506. https://doi.org/10.1016/j.rse.2018.04.021

    Article  Google Scholar 

  • Zhang HK, Schroder JL, Pittman JJ, Wang JJ, Payton ME (2005) Soil salinity using saturated paste and 1:1 soil to water extracts. Soil Sci Soc Am J 69:1146–1151

    Article  CAS  Google Scholar 

  • Zhang TT, Zeng SL, Gao Y, Ouyang ZT, Li B, Fang CM, Zhao B (2011) Using hyperspectral vegetation indices as a roxy to monitor soil salinity. Ecol Indic 11:1552–1562. https://doi.org/10.1016/j.ecolind.2011.03.025

    Article  Google Scholar 

  • Zhang HK, Roy DP, Yan L, Li Z, Huang H, Eric Vermote E, Skakun S, Roger JC (2018) Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens Environ 215:484–494. https://doi.org/10.1016/j.rse.2018.04.031

    Article  Google Scholar 

  • Zinck JA (2000) Monitoring soil salinity from remote sensing data. In: Proceedings of the 1st Workshop EARSel Special Interest Group on Remote Sensing for Developing Countries, Gent, Belgium, 13–15 September 2000, pp 359–368

    Google Scholar 

Download references

Acknowledgments

The author would like to thank the NASA-GLOVIS-GATE for the Landsat 8 and Sentinel-MSI data. Our gratitude goes to the editors of this book for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bannari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bannari, A. (2019). Synergy Between Sentinel-MSI and Landsat-OLI to Support High Temporal Frequency for Soil Salinity Monitoring in an Arid Landscape. In: Dagar, J., Yadav, R., Sharma, P. (eds) Research Developments in Saline Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-5832-6_3

Download citation

Publish with us

Policies and ethics