Skip to main content

A New Chaotic Map Based Secure and Efficient Pseudo-Random Bit Sequence Generation

  • Conference paper
  • First Online:
Security in Computing and Communications (SSCC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 969))

Included in the following conference series:

Abstract

The security strength of symmetric encryption schemes rely on its internal source responsible for generation of efficient random encryption keys. A cryptographically strong encryption scheme needs a perfect mechanism that can generate statistically profound and secure pseudo-random sequences. To fulfill the requirement, we propose to present a novel pseudo-random number generation (PRNG) algorithm based on dynamical behaviour of a new and improved one-dimensional chaotic map. The dynamical characteristics of proposed chaotic map are analyzed through lyapunov exponents and bifurcation diagrams. The upright features of improved chaotic map are explored for synthesis of an efficient PRNG algorithm. The performance of proposed PRNG algorithm is examined using NIST SP800-22 and TestU01 randomness test suites, linear complexity, 0-1 balancedness, key-sensitivity, key space, etc. The randomness and other relevant statistical performance results of proposed PRNG algorithm demonstrate that it is consistent and suitable for its usage in cryptographic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, X.Y., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn. 70(2), 1589–1592 (2012)

    Article  MathSciNet  Google Scholar 

  2. Hwang, S.Y., Park, G.Y., Kim, D.H., Jhang, K.S.: Efficient implementation of a pseudorandom sequence generator for high-speed data communications. ETRI J. 32(2), 222–229 (2010)

    Article  Google Scholar 

  3. Niederreiter, H., Winterhof, A.: On a new class of inversive pseudorandom numbers for parallelized simulation methods. Periodica Mathematica Hungarica 42(1–2), 77–87 (2001)

    Article  MathSciNet  Google Scholar 

  4. Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  5. Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(5), 615–621 (2000)

    Article  Google Scholar 

  6. Murillo-Escobar, M.A., Cruz-Hernández, C., Cardoza-Avendaño, L., Méndez-Ramírez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87(1), 407–425 (2017)

    Article  MathSciNet  Google Scholar 

  7. Lambić, D., Nikolić, M.: Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 90(1), 223–232 (2017)

    Article  MathSciNet  Google Scholar 

  8. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos based cryptosystems. Int. J. Bifur. Chaos 16, 2129–2151 (2006)

    Article  MathSciNet  Google Scholar 

  9. Kocarev, L., Lian, S. (eds.): Chaos-Based Cryptography: Theory, Algorithms and Applications, vol. 354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20542-2

    Book  MATH  Google Scholar 

  10. Oishi, S.I., Inoue, H.: Pseudo-random number generators and chaos. IEICE Trans. 1976–1990 65(9), 534–541 (1982)

    Google Scholar 

  11. Hamza, R.: A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl. 35, 119–127 (2017)

    Google Scholar 

  12. Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S.C., Hassan, Z.: Pseudo random number generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul. 19(1), 101–111 (2014)

    Article  Google Scholar 

  13. García-Martínez, M., Campos-Cantón, E.: Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 82(4), 2119–2131 (2015)

    Article  MathSciNet  Google Scholar 

  14. Singla, P., Sachdeva, P., Ahmad, M.: A chaotic neural network based cryptographic pseudo-random sequence design. In: 2014 Fourth International Conference on Advanced Computing and Communication Technologies (ACCT), pp. 301–306. IEEE, February 2014

    Google Scholar 

  15. Stoyanov, B., Kordov, K.: Novel secure pseudo-random number generation scheme based on two tinkerbell maps. Adv. Stud. Theor. Phys. 9(9), 411–421 (2015)

    Article  Google Scholar 

  16. Özkaynak, F.: Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 78(3), 2015–2020 (2014)

    Article  MathSciNet  Google Scholar 

  17. Ahmad, M., Farooq, O.: Chaos based PN sequence generator for cryptographic applications. In: 2011 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), pp. 83–86. IEEE, December 2011

    Google Scholar 

  18. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459 (1976)

    Article  Google Scholar 

  19. Xie, J., Yang, C., Xie, Q., Tian, L.: An encryption algorithm based on transformed logistic map. In: 2009 International Conference on Networks Security, Wireless Communications and Trusted Computing, NSWCTC 2009, vol. 2, pp. 111–114. IEEE, April 2009

    Google Scholar 

  20. Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos Interdisc. J. Nonlinear Sci. 5(1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  21. Rukhin, A., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22 (2001)

    Google Scholar 

  22. L’Ecuyer, P., Simard, R.: TestU01: AC library for empirical testing of random number generators. ACM Trans. Math. Softw. (TOMS) 33(4), 22 (2007)

    Article  Google Scholar 

  23. Golomb, S.W.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)

    MATH  Google Scholar 

  24. Pareek, N.K., Patidar, V., Sud, K.K.: A random bit generator using chaotic maps. IJ Netw. Secur. 10(1), 32–38 (2010)

    Google Scholar 

  25. Lambert, H.S.: International Business Machines Corporation, Method and apparatus for encryption of data. U.S. Patent 7,133, 522 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musheer Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, M., Doja, M.N., Beg, M.M.S. (2019). A New Chaotic Map Based Secure and Efficient Pseudo-Random Bit Sequence Generation. In: Thampi, S., Madria, S., Wang, G., Rawat, D., Alcaraz Calero, J. (eds) Security in Computing and Communications. SSCC 2018. Communications in Computer and Information Science, vol 969. Springer, Singapore. https://doi.org/10.1007/978-981-13-5826-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5826-5_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5825-8

  • Online ISBN: 978-981-13-5826-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics