Skip to main content

Tire Noise

  • Chapter
  • First Online:
Advanced Tire Mechanics

Abstract

Tire/road noise consists of noise due to tire surface vibration and noise related to aerodynamics. The former noise is usually explained by three elements, namely the external force applied to a tire, vibration properties of the tire and the acoustic field relating to the tire surface and road surface. The external force includes the tread impact associated with the lateral grooves and road roughness. The surface vibration of a tire is calculated by multiplying external forces by the tire’s vibration properties expressed by a transfer function. Tire/road radiation noise is then calculated by surface vibration via the Helmholtz equation [i.e., employing the boundary element method (BEM)]. The most important element for tire noise is the external force because other elements may not be controlled by tire design without deteriorating other tire performances. The external force due to lateral grooves is estimated by using a phenomenological model that uses the contact shape, pattern geometry and contact pressure or by conducting FEA. Meanwhile, the external force due to road roughness is estimated by measuring the spindle force of a tire rolling over a simple roughness and conducting contact analysis employing a Winker model with nonlinear contact stiffness or FEA. The vibration properties of a tire can be predicted by conducting FEA or using an elastic ring model. In pattern design, the phenomenological model is used as a design tool to determine the pattern geometry, and the pitch sequence is optimized by a GA. The Helmholtz resonator may be added to the circumferential grooves to reduce the pipe resonance noise. Furthermore, the special wheel or sound-absorbing material may be used to reduce the acoustic cavity noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note 10.1.

  2. 2.

    Problem 10.1.

  3. 3.

    Problem 10.3.

  4. 4.

    Problem 10.5.

  5. 5.

    Note 10.3.

  6. 6.

    See Footnote 5.

  7. 7.

    See Footnote 5.

  8. 8.

    See Footnote 5.

  9. 9.

    Note 10.4

References

  1. K. Hardy, Noise. Tire Technol. Int. 32–35 (2002)

    Google Scholar 

  2. U. Sandberg, Tyre/road noise - myths and realities. Internoise 2002, 35–55 (2002)

    Google Scholar 

  3. JATMA (ed.) On Noise Due to Tire and Road (7th version) (JATMA, 2004) (in Japanese)

    Google Scholar 

  4. WHO, Burden of Disease from Environmental Noise. Quantification of Healthy Life Years Lost in Europe (World Health Organization, 2011)

    Google Scholar 

  5. Bridgestone (ed.) Fundamentals and Application of Vehicle Tires (Tokyo Denki University Press, Tokyo, 2008) (in Japanese)

    Google Scholar 

  6. M. Heckl, Tyre noise generation. Wear 113, 157–170 (1986)

    Article  Google Scholar 

  7. U. Sandberg, J.A. Ejsmont, Tyre/road noise reference book, in Informex (2002)

    Google Scholar 

  8. Michelin, The tyre: mechanical and acoustic comfort (Societe de Technologie Michelin, 2002). http://www.dimnp.unipi.it/guiggiani-m/Michelin_Tire_Noise.pdf

  9. V.Q. Doan et al., Investigation into the influence of tire construction on coast-by noise. Tire Sci. Technol. 23(2), 96–115 (1995)

    Article  Google Scholar 

  10. Y. Nakajima, Theory on pitch noise and its application. J. Vib. Acoust. 125(3), 252–256 (2003)

    Article  Google Scholar 

  11. F. Liu et al., Modeling of tread block contact mechanics using linear viscoelastic theory. Tire Sci. Technol. 36(3), 211–226 (2008)

    Article  Google Scholar 

  12. F. Liu et al., Prediction of tread block forces for a free-rolling tyre in contact with a smooth road. Wear 269, 672–683 (2010)

    Article  Google Scholar 

  13. F. Liu et al., Prediction of tread block forces for a free-rolling tyre in contact with a rough road. Wear 282–283, 1–11 (2012)

    Article  Google Scholar 

  14. ISO 13473–1, in Characterization of Pavement Texture by Use of Surface Profiles—Part 1: Determination of Mean Profile Depth (1997)

    Google Scholar 

  15. PIARC, Optimization of surface characteristics, in Report to the XVIIIth World Road Congress 1987, Brussels, Belgium (Technical Committee on Surface Characteristics, World Road Association (PIARC), Paris, 1987)

    Google Scholar 

  16. Y. Nakajima et al., Application of the boundary element method and modal analysis to tire acoustics problem. Tire Sci. Technol. 21, 66–90 (1992)

    Article  Google Scholar 

  17. Y. Nakajima, Application of BEM and FEM modal analysis to tire noise. Nippon Gomu Kyokaishi 66(6), 433–441 (1993). (in Japanese)

    Article  Google Scholar 

  18. J. Perisse, A study of radial vibrations of a rolling tyre for tyre road noise characterisation. Mech. Syst. Signal Pr. 16(6), 1043–1058 (2002)

    Article  Google Scholar 

  19. H. Koike et al., Noise source identification of tire/road noise. Noise Control 22, 11–13 (1998). (in Japanese)

    Google Scholar 

  20. M. Satomi, et al., Study on sound source separation of tire pattern noise, in Proceedings of JSAE Conference, No. 882147 (1988)

    Google Scholar 

  21. N. Tomita, Low noise pavement and tire-road noise. Sound Control 23, 142–147 (1999). (in Japanese)

    Google Scholar 

  22. M. Brinkmeier et al., A finite element approach to the transient dynamics of rolling tires with emphasis on rolling noise simulation. Tire Sci. Technol. 35(3), 165–182 (2007)

    Article  Google Scholar 

  23. M. Brinkmeier, U. Nackenhorst, An approach for large-scale gyroscopic eigenvalue problems with application to high-frequency response of rolling tires. Compu. Mech. 41, 503–515 (2008)

    Article  MATH  Google Scholar 

  24. E. Skudrzyk, Simple and Complex Vibratory Systems, (The Pennsylvania State University Press, University Park, 1968)

    MATH  Google Scholar 

  25. F. Fahy, Foundation of Engineering Acoustics (Elsevier, Amsterdam, 2001)

    Google Scholar 

  26. W.F. Reiter Jr., Resonant sound and vibration characteristics of a truck tire. Tire Sci. Technol. 2(2), 130–141 (1974)

    Article  Google Scholar 

  27. R.J. Pinnington, A.R. Briscoe, A wave model for a pneumatic tyre belt. J. Sound Vib. 253(5), 941–959 (2002)

    Article  Google Scholar 

  28. J.S. Bolton, et al., The wave number decomposition approach to the analysis of tire vibration, in Noise Conference, vol. 98, Michigan (1998), pp. 97–102

    Google Scholar 

  29. J.S. Bolton, Y.J. Kim, in Visualization of the tire vibration and sound radiation and modeling of tire vibration with an emphasis on wave propagation. Technical Report, The Institute for Safe, Quiet and Durable Highways (2003). Available at: http://ntl.bts.gov/lib/24000/24600/24635/index.html

  30. W. Kropp et al., On the sound radiation from tyres. ACUSTICA-Acta Acustica 87, 769–779 (2000)

    Google Scholar 

  31. R.A.G. Graf et al., On the horn effect of a tyre/road interface, part I: experiment and computation. J. Sound Vib. 256(3), 417–431 (2002)

    Article  Google Scholar 

  32. R.E. Hayden, Roadside noise from the interaction of a rolling tire with road surface, in Proceedings of Purdue Noise Conference, West Lafayette, IN (1971), pp. 62–67

    Google Scholar 

  33. M.J. Gagen, Novel acoustic sources from squeezed cavities in car tires. J. Acoust. Soc. Am. 106(2), 794–801 (1999)

    Article  Google Scholar 

  34. S. Kim et al., Prediction method for tire air-pumping noise using a hybrid technique. J. Acoust. Soc. Am. 119(6), 3799–3812 (2006)

    Article  Google Scholar 

  35. D.G. Crighton, et al., Modern Methods in Analytical Acoustics (Springer, Berlin, 1992)

    Google Scholar 

  36. Y. Nakajima, Analytical model of longitudinal tire traction in snow. J. Terramechanics 40(1), 63–82 (2004)

    Article  Google Scholar 

  37. A.H.W.M. Kuijpers, Tyre/road noise modelling: the road from a tyre’s point-of-view. Report No. M + P.MVW.01.8.1 (2001)

    Google Scholar 

  38. M. Yabu, The characterisitcs of tire on NVH, in Symposium of JSAE, 9435225 (1994)

    Google Scholar 

  39. T. Beckenbauer, et al., Tyre/road noise prediction: a comparison between the SPERoN and HyRoNE models—part I, in Euronoise Acoustics’08 (2008)

    Google Scholar 

  40. W. Kropp, A mathematical model of tyre noise generation. Int. J. Vehicle Des. 6, 310–329 (1999)

    Article  Google Scholar 

  41. K. Larsson, W. Kropp, A high-frequency three-dimensional tyre model based on two coupled elastic layers. J. Sound Vib. 253(4), 889–908 (2002)

    Article  Google Scholar 

  42. D.J. O’Boy, A.P. Dowling, Tyre/road interaction noise—Numerical noise prediction of a patterned tyre on a rough road surface. J. Sound Vib. 323, 270–291 (2009)

    Article  Google Scholar 

  43. F. Böhm, Mechanik des Gürtelreifens. Archive Appl. Mech. 3, 582–101 (1966)

    Google Scholar 

  44. P. Kindt et al., Development and validation of a three-dimensional ring-based structural tyre model. J. Sound Vib. 326, 852–869 (2009)

    Article  Google Scholar 

  45. M. Koishi, et al., Radiation noise simulation of a rolling tire excited by tread pattern, in SIMULIA Customer Conference (2011)

    Google Scholar 

  46. E.J. Ni et al., Radiated noise from tire/wheel vibration. Tire Sci. Technol. 25(1), 29–42 (1997)

    Article  MathSciNet  Google Scholar 

  47. J. Biermann et al., Computational model to investigate the sound radiation from rolling tires. Tire Sci. Technol. 35(3), 209–225 (2007)

    Article  Google Scholar 

  48. T. Saguchi, et.al, Tire radiation-noise prediction using FEM, in Inter-noise 2006, Honolulu, USA (2006)

    Google Scholar 

  49. M. Brinkmeier, U. Nackenhorst, Computational investigations on the dynamics of tires rolling on rough roads. Tire Sci. Technol. 37(1), 47–59 (2009)

    Article  Google Scholar 

  50. M. Brinkmeier et al., A finite element approach for the simulation of tire rolling noise. J. Sound Vib. 309, 20–39 (2008)

    Article  Google Scholar 

  51. P.B.U. Andersson, W. Kropp, Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness. J. Sound Vib. 318, 296–312 (2008)

    Article  Google Scholar 

  52. P.B.U. Andersson, et al., Numerical modelling of tyre/road interaction. Univ. Pitesti Sci. Bull. Automotive Ser. 22(1) (2008)

    Google Scholar 

  53. B.R. Mace et al., Finite element prediction of wave motion in structural waveguides. J. Acoust. Soc. Am. 117(5), 28350–2843 (2005)

    Article  Google Scholar 

  54. W. Kropp, et al., Reduction potential of road traffic noise. Appl. Acous. (2007)

    Google Scholar 

  55. Y. Waki et al., Free and forced vibrations of a tyre using a wave/finite element approach. J. Sound Vib. 323, 737–756 (2009)

    Article  Google Scholar 

  56. P. Sabiniarz, W. Kropp, A waveguide finite element aided analysis of the wave field on a stationary tyre, not in contact with the ground. J. Sound Vib. 329, 3041–3064 (2010)

    Article  Google Scholar 

  57. Y. Waki, et al., Estimation of noise radiating parts of a tire using the wave finite element method, in Proceedings of Inter-noise 2011 (2011)

    Google Scholar 

  58. C. Hoever, in The influence of modelling parameters on the simulation of car tyre rolling losses and rolling noise. Ph.D. Thesis, Chalmers University of Technology (2012)

    Google Scholar 

  59. W. Kropp et al., On the sound radiation of a rolling tyre. J. Sound Vib. 331, 1789–1805 (2012)

    Article  Google Scholar 

  60. J.J. Lee, A.E. Ni, Structure-Borne tire noise statistical energy analysis model. Tire Sci. Technol. 25(3), 177–186 (1997)

    Article  Google Scholar 

  61. P. Bremner, et al., A model study of how tire construction and material affect vibration-radiated noise, in SAE Paper, No. 972049 (1997)

    Google Scholar 

  62. J.J. Lee et al., Structure-borne vibration transmission in a tire and wheel assembly. Tire Si. Technol. 26(3), 173–185 (1998)

    Article  Google Scholar 

  63. T. Beckenbauer, et al. Simulation of tyre/road noise as a tool for the evaluation of the acoustic behavior of road surfaces, in 5th Eurasphalt & Eurobitume Congress, Istanbul (2012)

    Google Scholar 

  64. F.D. Roo, et al., Predictive performance of the tyre-road noise model TRIAS, in Inter-noise 2001, Hague, Netherlands (2001)

    Google Scholar 

  65. M. Li, et al., New approach for modelling tyre/road noise, in Inter-noise 2009, Canada (2009)

    Google Scholar 

  66. K. Iwao, I. Ymamazaki, A study on the mechanism of tire/road noise. JSAE Rev. 17, 139–144 (1996)

    Article  Google Scholar 

  67. N.A. Nilsson, Possible method of reducing external tyre noise”, Proc. Int. Tire Noise Conf. 1979, Stockholm, Sweden, 1979

    Google Scholar 

  68. K. Klaus, D. Ronneberger, Noise radiation from rolling tires—sound amplification by the “horn-effect”, in Inter-noise 1982, San Francisco, USA (1982)

    Google Scholar 

  69. D. Ronneberger, Towards quantitative prediction of tyre/road noise, in Workshop on Rolling Noise Generation (Institute fur Technisc Technische Universitat, Berlin, 1989)

    Google Scholar 

  70. C.Y. Kuo et al., Horn amplification at a tyre/road interface-Part II: ray theory and experiment. Inter-noise 1999, 125–130 (1999)

    Google Scholar 

  71. T. Sakata et al., Effects of tire cavity resonance on vehicle road noise. Tire Sci. Technol. 18(2), 68–79 (1990)

    Article  MathSciNet  Google Scholar 

  72. J.K. Thompson, Plane wave resonance in the air cavity as a vehicle interior noise source. Tire Sci. Technol. 23(1), 2–10 (1995)

    Article  Google Scholar 

  73. T.L. Richards, Finite element analysis if structural-acoustic coupling in tyres. J. Sound Vib. 149, 235–243 (1991)

    Article  Google Scholar 

  74. L.R. Molisani et al., A coupled tire structure/acoustic cavity model. Int. J. Solid Struct. 40, 5125–5138 (2003)

    Article  MATH  Google Scholar 

  75. H. Yamaguchi, Y. Akiyoshi, Theoretical analysis of tire acoustic cavity noise and proposal of improvement technique. JSAE Rev. 23, 89–94 (2002)

    Article  Google Scholar 

  76. J.J. Lee et al., Structure-borne vibration transmission in a tire and wheel assembly. Tire Sci. Technol. 26(3), 173–185 (1998)

    Article  Google Scholar 

  77. M.J. Subler, et al., Experimental study of the acoustic cavity resonance in automobile tire dynamic response, in Proceedings of ASME, Noise Control and Acoustic Division, vol. 26 (1999), pp. 177–183

    Google Scholar 

  78. R. Gunda et al., Analytical model of tire cavity resonance and coupled tire/cavity modal model. Tire Sci. Technol. 28(1), 33–49 (2000)

    Article  Google Scholar 

  79. M. Tanaka, K. Fujisawa, Development of low noise tire. JSAE J. 60(4), 81–84 (2006). (in Japanese)

    Google Scholar 

  80. H.M.R. Aboutorabi, L. Kung, Application of coupled structural acoustic analysis and sensitivity calculations to a tire noise problem. Tire Sci. Technol. 40(1), 25–41 (2012)

    Article  Google Scholar 

  81. A. Selamet et al., Theoretical, computational and experimental investigation of Helmholtz resonators with fixed volume: lumped versus distributed analysis. J. Sound Vib. 187(2), 358–367 (1995)

    Article  Google Scholar 

  82. S. Fujiwara et al., Reduction of tire groove noise using slot resonators. Tire Sci. Technol. 37(3), 207–223 (2009)

    Article  Google Scholar 

  83. Y. Tozawa, Y. Suzuki, Road noise and tire vibration characteristics. JSAE J. 40(12), 1624–1929 (1986). (in Japanese)

    Google Scholar 

  84. T. Saguchi, et al., Vehicle interior noise prediction using tire characteristics and vehicle transmissibility, in SAE Paper, No. 2007-01-1533 (2007)

    Google Scholar 

  85. Y. Nakajima, A. Abe, Application of genetic algorithms of optimization of tire pitch sequences. Jpn. J. Ind. Appl. Math. 17(3), 403–426 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  86. P. Campanac et al., Application of vibration analysis of linear systems with time-periodic coefficients to dynamics of a rolling tyre. J. Sound Vib. 231, 37–77 (2000)

    Article  Google Scholar 

  87. P. Andersson et al., High frequency dynamic behaviour of smooth and patterned passenger car tyres. Acta Acustica United Acustica 90(3), 445–456 (2004)

    Google Scholar 

  88. J.H. Varterasian, Quieting noise mathematically—its application to snow tires, in SAE Paper, No. 690520 (1969)

    Google Scholar 

  89. P.R. Willett, Tire tread pattern sound generation. Tire Sci. Technol. 3(4), 252–266 (1975)

    Article  Google Scholar 

  90. Japanese Patent No. 3-23366

    Google Scholar 

  91. Japanese Patent No. 4-232105

    Google Scholar 

  92. Japanese Patent No. 4-363234

    Google Scholar 

  93. European Patent No. 0 543 493 A1

    Google Scholar 

  94. Y. Nakajima, et al., New tire design procedure based on optimization technique, in SAE Paper, 960997 (1996)

    Google Scholar 

  95. A. Abe et al., Optimum Young’s modulus distribution in tire design. Tire Sci. Technol. 24, 204–219 (1996)

    Article  Google Scholar 

  96. Y. Nakajima et al., Theory of optimum tire contour and its application. Tire Sci. Technol. 24, 184–203 (1996)

    Article  Google Scholar 

  97. U. S. Patent, in Method of determining a pitch arrangement of a tire. US258567, US5717613

    Google Scholar 

  98. K.M. Hoffmeister, J.E. Bernard, Tread pitch arrangement optimization through the use of a genetic algorithm. Tire Sci. Technol. 26(1), 2–22 (1998)

    Article  Google Scholar 

  99. H. Sugimoto, Discrete optimization of truss structures and genetic algorithms, in Proceedings of Korea-Japan Joint Seminar on STRUCTURAL OPTIMIZATION (1992)

    Google Scholar 

  100. E. Zwicker, H. Fastl, Psychoacoustics: Facts and Models (Springer, Berlin, 1990)

    Google Scholar 

  101. M. Ohashi, et al., in Noise quality evaluation system. Technical Report of Onosokki, No. 11 (1998), p. 23

    Google Scholar 

  102. B. Moor, (translated by K. Ogushi), in Introduction of Psychoacoustics (Seishinshobou, 1994)

    Google Scholar 

  103. H. Fastl, Calibration signals for meters of loudness, sharpness, fluctuation strength, and roughness. Inter-noise 93, 1257–1260 (1993)

    Google Scholar 

  104. F.S. Buss, in Subjective perception of pattern noise, a tonal component of the tyre/road noise, and its objective characterization by spectral analysis and calculating contours. Ph.D. Thesis, Oldenburg (2006)

    Google Scholar 

  105. M. Kikuchi, et al., Evaluation of timbre of air-conditioner noise, in Proceedings of Acoustical Society of Japan (1992), p. 699

    Google Scholar 

  106. E.C. Frank, et al., In-vehicle tire sound quality prediction from tire noise data, in SAE Paper, 2007-1-2253 (2007)

    Google Scholar 

  107. F.K. Brandel, et al., Objective assessment of vehicle noise quality as a basis for sound engineering, in JSAE Conference, Paper No. 9833368 (1998)

    Google Scholar 

  108. Japanese Patent No. 2008-58458

    Google Scholar 

  109. A.M. Jessop, J.S. Bolton, Tire surface vibration and sound radiation resulting from the tire cavity mode. Tire Sci. Technol. 39(4), 245–255 (2011)

    Article  Google Scholar 

  110. B. Peeters, et al., Reduction of the horn effect for car and truck tyres by sound absorbing road surfaces, in Inter-noise 2010, Lisbon (2010)

    Google Scholar 

  111. W.R. Graham et al., Characterisation and simulation of asphalt road surfaces. Wear 271, 734–747 (2011)

    Article  Google Scholar 

  112. R.J. Pinnington, A particle-envelope surface model for road-tyre interaction. Int. J. Solid Struct. 49, 546–555 (2012)

    Article  Google Scholar 

  113. R.J. Pinnington, Tyre-road contact using a particle–envelope surface model. J. Sound Vib. 332, 7055–7075 (2013)

    Article  Google Scholar 

  114. J. Suh, et al., Development of input loads for road noise analysis, in SAE Paper, 2003-01-1608 (2003)

    Google Scholar 

  115. H. Yamada, et al., Development of road noise prediction method, in JSAE Conference, Paper No. 20005007 (2000)

    Google Scholar 

  116. I. Shima, V.Q. Doan, Method of simulating tire noise. Trans. JSAE 37(6), 27–31 (2006)

    Google Scholar 

  117. J. Cesbron et al., Experimental study of tyre/road contact forces in rolling conditions for noise prediction. J. Sound Vib. 320, 125–144 (2009)

    Article  Google Scholar 

  118. T. Koizumi et al., An analysis of radiated noise from rolling tire vibration. JSAE Review 24, 465–469 (2003)

    Article  Google Scholar 

  119. D. Belluzzo et al., New predictive model for the study of vertical forces (up to 250 Hz) induced on the tire hub by road irregularities. Tire Sci. Technol. 30(1), 2–18 (2002)

    Article  Google Scholar 

  120. T. Shibata, et al., Proposal for the modeling method of the input for road noise and verification for accuracy of prediction analysis, in Proceedings of JSAE Conference, Paper No. 20025457 (2002)

    Google Scholar 

  121. T. Nakagawa, et al., An analyzing method of the exciting force on tire for road noise, in Proceedings of JSAE Conference, Paper No. 9838570 (1998)

    Google Scholar 

  122. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  123. T. Fujikawa et al., Definition of road roughness parameters for tire vibration noise control. Appl. Acoust. 66, 501–512 (2005)

    Article  Google Scholar 

  124. J. Cesbron et al., Numerical and experimental study of multi-contact on an elastic half-space. Int. J. Mech.l Sci. 51, 33–40 (2009)

    Article  MATH  Google Scholar 

  125. J. Cesbron, H.P. Yin, Contact analysis of road aggregate with friction using a direct numerical method. Wear 268, 686–692 (2010)

    Article  Google Scholar 

  126. G. Dubois et al., Numerical evaluation of tyre/road contact pressures using a multi-asperity approach. Int. J. Mech. Sci. 54, 84–94 (2012)

    Article  Google Scholar 

  127. T.G. Clapp et al., Development and validation of a method for approximating road surface texture-induced contact pressure in tire-pavement interaction. Tire Sci. Technol. 16(1), 2–17 (1988)

    Article  Google Scholar 

  128. L.A. Galin, Contact problems in the theory of elasticity, Department of Mathematics, North Carolina State University, Raleigh, N.C. (1961)

    Google Scholar 

  129. F. Wullens, W. Kropp, A three-dimensional contact model for tyre/road interaction in rolling conditions. Acta Acustica United Acustica 90, 702–711 (2004)

    Google Scholar 

  130. F. Yang, Indentation of an incompressible elastic film. Mech. Mater. 30, 275–286 (1998)

    Article  Google Scholar 

  131. J.T. Tielking, Plane vibration characteristics of a pneumatic tire model, in SAE Paper, No. 650491 (1965)

    Google Scholar 

  132. H.B. Pacejka, Tire in-plane dynamics, in Mechanics of Pneumatic Tires, ed. by S.K. Clark (National Beaureau of Standards Monograph, 1971)

    Google Scholar 

  133. J. Padovan, On viscoelasticity and standing waves in tires. Tire Sci. Technol. 4(4), 233–246 (1976)

    Article  Google Scholar 

  134. L.E. Kung et al., Free vibration of a pneumatic tire-wheel unit using a ring on an elastic foundation and a finite element model. J. Sound Vib. 107(2), 181–194 (1986)

    Article  Google Scholar 

  135. S. Gong, in A study of in-plane dynamics of tires. Ph. D. Thesis, Delft University of Technology (1993)

    Google Scholar 

  136. Y.K. Kim, W. Soedel, On ring models for tire vibrations, in Noise-Con 98 (1998), Michigan, pp. 91–96

    Google Scholar 

  137. W. Kropp, Structure-borne sound on a smooth tyre. Appl. Acoust. 26, 181–192 (1989)

    Article  Google Scholar 

  138. R.J. Pinnington, Radial force transmission to the hub from an unloaded stationary tyre. J. Sound Vib. 253(5), 961–983 (2002)

    Article  Google Scholar 

  139. J.M. Muggleton et al., Vibrational response prediction of a pneumatic tyre using an orthotropic two-plate wave model. J. Sound Vib. 264, 929–950 (2003)

    Article  Google Scholar 

  140. R.F. Keltie, Analytical model of the truck tire vibration sound mechanism. J. Acoust. Soc. Am. 71(2), 359–367 (1982)

    Article  Google Scholar 

  141. Y.J. Kim, J.S. Bolton, Effects of rotation on the dynamics of a circular cylindrical shell with application to tire vibration. J. Sound Vib. 275, 605–621 (2004)

    Article  Google Scholar 

  142. A. Dowling, Design and implementation of solution at validation sites work package test of new quiet passenger tyre designs, in TIP4-CT-2005-516420 (2005)

    Google Scholar 

  143. R.J. Pinnington, A wave model of a circular tyre. Part 1: belt modelling. J. Sound Vib. 290, 101–132 (2006)

    Article  Google Scholar 

  144. R.J. Pinnington, A wave model of a circular tyre. Part 2: side-wall and force transmission modelling. J. Sound Vib. 290, 133–168 (2006)

    Article  Google Scholar 

  145. B.S. Kim et al., The identification of sound generating mechanisms of tyres. Appl. Acoust. 68, 114–133 (2007)

    Article  Google Scholar 

  146. I. Lopez et al., Modelling vibrations on deformed rolling tyres-a modal approach. J. Sound Vib. 307, 481–494 (2007)

    Article  Google Scholar 

  147. C. Lecomte, W.R. Graham, in A tyre belt model based on a 2D beam theory. Technical Report, CUED/A-AERO/TR.28 (2008)

    Google Scholar 

  148. C. Lecomte et al., Validation of a Belt Model for Prediction of Hub Forces from a Rolling Tire. Tire Sci. Technol. 37(2), 62–102 (2009)

    Article  Google Scholar 

  149. C. Lecomte et al., A shell model for tyre belt vibrations. J. Sound Vib. 329, 1717–1742 (2010)

    Article  Google Scholar 

  150. G.H. Koopmann, Application of sound intensity computations based on the Helmholtz equation, in 11 e ICA, Paris (1983), p. 83

    Google Scholar 

  151. I. Kido, Tire and road input modeling for low-frequency road noise prediction, in SAE Paper, No. 2011-01-1690 (2011)

    Google Scholar 

  152. P. Kindt et al., Effects of rotation on the tire dynamic behavior: experimental and numerical analyses. Tire Sci. Technol. 41(4), 248–261 (2013)

    Google Scholar 

  153. S. Suzuki, et al., Coupling of the boundary element method and modal analysis for structural acoustic problems. Trans. JSME, 52, 310–317 (1985) (in Japanese)

    Google Scholar 

  154. H.A. Schenck, Improved integral formulation for acoustic radiation problems. J. Acoust. Soc. Am. 44, 41–58 (1968)

    Article  Google Scholar 

  155. L. Pahlevani, et al., Tire/road dynamic contact; study of different approaches to modelling of a tire, in Proceedings of 9th International Conference on Structural Dynamics (2014), pp. 1783–1788

    Google Scholar 

  156. T. Beckenbauer, et al, Influence of the road surface texture on the tyre road noise, Research program 03.293R95M, German Ministry of Transport and German Highway Research Institute (2001)

    Google Scholar 

  157. Y. Miyama et al., Development of tire eigenvalue control technology for optimization of road noise spectrum. Trans. JSAE 40(5), 1133–11138 (2009)

    Google Scholar 

  158. T. Saguchi, Influence of the rolling condition given to the natural frequency of a tire, in JSAE Symposium, No. 9840829 (1998)

    Google Scholar 

  159. B. Mills, J.W. Dunn, The mechanical mobility of rolling tyres, in Proceedings of Vibration and Noise in Motor Vehicles (IMechE C104/7), London, UK (1971), pp. 90–101

    Google Scholar 

  160. T. Ushijima, M. Takayama, Modal analysis of tire and system simulation, in SAE Paper, No. 880585 (1988)

    Google Scholar 

  161. E. Vinesse, Tyre vibration testing from modal analysis to dispersion relations, in Proceedings of ISATA 88, vol. 1, Paper No. 88048 (1988)

    Google Scholar 

  162. F. Fahy, P. Cardonio, Sound and Structural Vibration, 2nd edn. (Academic Press, New York, 2007)

    Google Scholar 

  163. http://webistem.com/acoustics2008/acoustics2008/cd1/data/articles/000417.pdf. Accessed Feb 23 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Nakajima .

Notes

Notes

Note 10.1 Eq. (10.5)

Suppose that the acceleration is constant and the initial conditions are given by h(0) = 0, dh/dt|t=0 = 0. Then, h(t) is given by h(t) = at2, where a is a constant. When the average speed is dh/dttouch during dttouch, a is given by

$$a = {{\frac{{{\text{d}}h}}{{{\text{d}}t_{\text{touch}} }}} \mathord{\left/ {\vphantom {{\frac{{{\text{d}}h}}{{{\text{d}}t_{\text{touch}} }}} {\frac{{{\text{d}}t_{\text{touch}} }}{2}}}} \right. \kern-0pt} {\frac{{{\text{d}}t_{\text{touch}} }}{2}}}.$$

Because the acceleration is given by 2a, it is expressed as

$$\frac{{{\text{d}}^{2} h}}{{{\text{d}}t^{2} }} = 2{{\frac{{{\text{d}}h}}{{{\text{d}}t_{\text{touch}} }}} \mathord{\left/ {\vphantom {{\frac{{{\text{d}}h}}{{{\text{d}}t_{\text{touch}} }}} {\frac{{{\text{d}}t_{\text{touch}} }}{2}}}} \right. \kern-0pt} {\frac{{{\text{d}}t_{\text{touch}} }}{2}}}.$$

Note 10.2 Cutoff Frequency (Cut-on Frequency)

The bending wave equation for a thin plate lying on the x–z plane in rectangular Cartesian coordinates is given by

$$D\left( {\frac{{\partial^{4} w}}{{\partial x^{4} }} + 2\frac{{\partial^{4} w}}{{\partial x^{2} \partial z^{2} }} + \frac{{\partial^{4} w}}{{\partial z^{4} }}} \right) = - m\frac{{\partial^{2} w}}{{\partial t^{2} }}.$$
(10.124)

Consider a simple harmonic plane wave described by

$$w(x,z,t) = \tilde{w}\exp \left[ {j(\omega t - k_{x} x - k_{z} z)} \right].$$
(10.125)

The substitution of Eq. (10.125) into Eq. (10.124) yields

$$\left[ {D\left( {k_{x}^{4} + 2k_{x}^{2} k_{z}^{2} + k_{z}^{4} } \right) - m\omega^{2} } \right]\tilde{w} = 0$$
(10.126)

or

$$D(k_{x}^{2} + k_{z}^{2} )^{2} - m\omega^{2} = 0.$$
(10.127)

If we write \(k_{b}^{2} = k_{x}^{2} + k_{z}^{2}\), we obtain

$$Dk_{b}^{4} - m\omega^{2} = 0.$$
(10.128)

The flat-plate waveguide shown in Fig. 10.120 takes the form of an infinitely long strip of uniform width l located between boundaries that provide simple support. w is expressed by

$$w = \tilde{w}_{0} \sin (p\pi x/l)\exp \left\{ {j(\omega t - k_{zp} z)} \right\}.$$
(10.129)

Here, kzp is the wavenumber corresponding to the propagation of the waveguide modes:

$$k_{zp}^{2} = k_{b}^{2} - k_{x}^{2} = k_{b}^{2} - \left( {\frac{p\pi }{l}} \right)^{2} = \omega \left( {\frac{m}{D}} \right)^{1/2} - \left( {\frac{p\pi }{l}} \right)^{2} .$$
(10.130)

This relation is represented qualitatively in Fig. 10.120. Equation (10.130) shows that real (propagating) solutions exist for each value of p only at frequencies that satisfy the condition ω > (pπ/l)2(D/m)1/2. The frequencies at which kzp = 0 are resonance frequencies of a simply supported beam of length l, and they are known as the cutoff frequencies of the waveguide modes of order p. Below its cutoff frequencies, a mode cannot effectively propagate wave energy and its amplitude decays exponentially away from a point of excitation. At the modal cutoff frequencies, the modal phase velocities cph = ω/kzp are infinite and the modal group velocities cg = ∂ω/∂kzp are zero.

Fig. 10.120
figure 120

Wave behavior of a simply supported flat-plate strip [162]

Note 10.3 Eqs. (10.77), (10.81), (10.86) and (10.88)

Equation (10.77)

Considering the relation p = ρcV, where V is the particle velocity, the volume velocity U is expressed by U = VS = Sp/(ρc).

Equation (10.81)

Equation (10.81) is obtained by solving

$$A_{2} + B_{2} = A_{3} + B_{3} ,\quad \frac{S}{\rho c}(A_{2} - B_{2} ) = \frac{{S_{cp} }}{\rho c}(A_{3} - B_{3} ) \Rightarrow A_{2} - B_{2} = m(A_{3} - B_{3} ).$$

Equation (10.86)

Substituting Eq. (10.77) into Eq. (10.81) and then substituting Eq. (10.81) into Eq. (10.83), we obtain

$$\begin{aligned} A_{4} & = A_{1} {\text{e}}^{{ - jkl_{2} }} \left( {\frac{m + 1}{2m}{\text{e}}^{{ - jkl_{1} }} - \frac{m - 1}{2m}{\text{e}}^{{jkl_{1} }} } \right) \\ B_{4} & = A_{1} {\text{e}}^{{jkl_{2} }} \left( {\frac{m - 1}{2m}{\text{e}}^{{ - jkl_{1} }} - \frac{m + 1}{2m}{\text{e}}^{{jkl_{1} }} } \right). \\ \end{aligned}$$

The substitution of the above equations into Eq. (10.85) yields

$$(m + 1)\left\{ {{\text{e}}^{{ - jk(l_{1} + l_{2} )}} - {\text{e}}^{{jk(l_{1} + l_{2} )}} } \right\} + (m - 1)\left\{ {{\text{e}}^{{ - jk(l_{1} - l_{2} )}} - {\text{e}}^{{jk(l_{1} - l_{2} )}} } \right\} = 0.$$

Equation (10.88)

Equation (10.87) can be rewritten as

$$m\sin \left( {k\frac{{L_{c} - l_{cp} }}{2}} \right)\cos \left( {k\frac{{l_{cp} }}{2}} \right) + \cos \left( {k\frac{{L_{c} - l_{cp} }}{2}} \right)\sin \left( {k\frac{{l_{cp} }}{2}} \right) = 0.$$

Transforming the above equation gives

$$\left\{ {m(\cos kl_{cp} + 1) + 1 - \cos kl_{cp} } \right\}\tan k\frac{{L_{c} }}{2} - (m - 1)\sin kl_{cp} = 0,$$
$$\tan k\frac{{L_{c} }}{2} = \frac{{(m - 1)\sin kl_{cp} }}{{m + 1 + (m - 1)\cos kl_{cp} }} = \frac{{\sin kl_{cp} }}{{\frac{m + 1}{m - 1} + \cos kl_{cp} }}.$$

Note 10.4 Ray Theory [70] and Eq. (10.113)

Ray theory

Suppose that a straight ray has time dependence e−iωt and wavenumber k. The ray can be expressed as p(s) = A(s)eiks, where s is the distance measured along the ray, with associated amplitude A(s) and phase ks. According to ray theory, energy flux is conserved along any ray tube as shown in Fig. 10.121. A2(s)dΣ(s)/ρc is therefore constant, where dΣ(s) is the cross-sectional area of the ray tube. The elemental area dΣ(s) has two Gaussian principal directions, say 1 and 2, and principal radii of curvature σ1 + s and σ2 + s, respectively. Physically, σ1 and σ2 are the distances from s = 0 to the caustics in the two principal directions. The ratio of the area change is therefore dΣ(s)/dΣ(0) = (σ1 + s)(σ2 + s)/(σ1σ2), which leads to the ray amplitude at s:

$$A(s) = A(0)\left( {\frac{{\sigma_{1} \sigma_{2} }}{{(\sigma_{1} + s)(\sigma_{2} + s)}}} \right)^{1/2} .$$
(10.131)
Fig. 10.121
figure 121

A ray tube

When an incident acoustic ray from the caustic S is reflected by a rigid surface, the reflected ray does not change phase at the reflection point. The ray is emitted from the image caustic S′ with an amplitude that leads to p(0) at point O, as shown in Fig. 10.122. Therefore, incorporating the above equation, the ray at s is

$$p(s) = p(0)\left( {\frac{{\sigma_{1} \sigma_{2} }}{{(\sigma_{1} + s)(\sigma_{2} + s)}}} \right)^{1/2} {\text{e}}^{{{\text{i}}ks}} ,$$
(10.132)

where σ2 is the distance from O to the caustic of the ray in the second principal direction. From elementary geometrical relations, we obtain

$$\sigma_{1} = \frac{{\rho_{1} R\cos \theta }}{{2\rho_{1} + R\cos \theta }}.$$
(10.133)

For this cylindrical tire, the radius of curvature is infinitely large across the tire belt. Substituting R =  into Eq. (10.133) and changing the suffix from 1 to 2, we obtain

$$\sigma_{2} = \rho_{2} .$$
(10.134)

Equation (10.132) is applied recursively to calculate the ray amplitude for each reflection on the tire surface.

Fig. 10.122
figure 122

Ray reflection from a smoothly curved surface

Derivation of ( 10.133 )

Using the sine theorem illustrated in Fig. 10.122, we obtain

$$\begin{aligned} & \frac{{R{\text{d}}\phi }}{{\sin (2{\text{d}}\phi + {\text{d}}\psi )}} = \frac{{\sigma_{1} }}{{\sin \left( {\frac{\pi }{2} - \frac{3}{2}{\text{d}}\phi - \theta - {\text{d}}\psi } \right)}} \\ & \frac{{R{\text{d}}\phi }}{{\sin ({\text{d}}\psi )}} = \frac{{\rho_{1} }}{{\sin \left( {\frac{\pi }{2} - \frac{{{\text{d}}\phi }}{2} - \theta - {\text{d}}\psi } \right)}}. \\ \end{aligned}$$

From the above equations, we obtain

$$\begin{aligned} & R\left\{ {\cos \theta - \sin \theta \left( {{\text{d}}\psi + \frac{3}{2}{\text{d}}\phi } \right)} \right\}{\text{d}}\phi = \sigma_{1} (2{\text{d}}\phi + {\text{d}}\psi ) \\ & R\left\{ {\cos \theta - \sin \theta \left( {{\text{d}}\psi + \frac{{{\text{d}}\phi }}{2}} \right)} \right\}{\text{d}}\phi = \rho_{1} {\text{d}}\psi . \\ \end{aligned}$$

Neglecting the small terms, we obtain

$$\begin{aligned} R\cos \theta \frac{{{\text{d}}\phi }}{{{\text{d}}\psi }} & = \sigma_{1} \left( {2\frac{{{\text{d}}\phi }}{{{\text{d}}\psi }} + 1} \right) \\ R\cos \theta \frac{{{\text{d}}\phi }}{{{\text{d}}\psi }} & = \rho_{1} \\ \end{aligned}$$

and eliminating dϕ/dψ, we obtain σ1 = ρ1R cos θ/(2ρ1 + R cos θ).

Equation (10.113)

$$\begin{aligned} & \frac{{d_{2M} }}{{\sin \left\{ {\frac{\pi }{2} - (\phi + \theta_{2M} )} \right\}}} = \frac{L}{{\sin \left\{ {\frac{\pi }{2} + \theta_{2M} } \right\}}} \\ & \frac{{d_{2M} }}{{\cos (\phi + \theta_{2M} )}} = \frac{{d_{0} \cos \theta_{0} }}{{\cos (\phi + \theta_{2M} )\cos \theta_{2M} }} = \frac{L}{{\cos \theta_{2M} }} \\ & \frac{{l_{2M} }}{\sin \phi } = \frac{L}{{\sin \left\{ {\frac{\pi }{2} + \theta_{2M} } \right\}}} \\ & \theta_{2M} = \theta_{0} + 2M\alpha \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, Y. (2019). Tire Noise. In: Advanced Tire Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-13-5799-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5799-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5798-5

  • Online ISBN: 978-981-13-5799-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics