Histological Considerations of Glaucoma Drainage Devices

  • Nadia Ríos-Acosta
  • Sonia Corredor-Casas


The fundament of glaucoma surgery is to artificially create an additional pathway for aqueous humor outflow, with a consequent lowering of IOP (Fig. 19.1).


  1. 1.
    Amoozgar B, Lin SC, Han Y, Kuo J. A role for antimetabolites in glaucoma tube surgery: current evidence and future directions. Curr Opin Ophthalmol. 2016;27(2):164–9.CrossRefGoogle Scholar
  2. 2.
    Neelakantan A, Parrish R. Risk factors for wound healing. Chapter 90. In: Shaarawy T, Sherwood M, Hitchings R, Crowston J, editors. Glaucoma. 2nd ed. Edinburgh: Elsevier Limited; 2015. p. 891.Google Scholar
  3. 3.
    Lama PJ, Fechtner RD. Antifibrotics and wound healing in glaucoma surgery. Surv Ophthalmol. 2003;48(3):314–46.CrossRefGoogle Scholar
  4. 4.
    Bergen T, Van de Velde S, Vandewalle E, Moons L. Improving patient outcomes following glaucoma surgery: state of the art and future perspectives. Clin Ophthalmol. 2014;8:857–67.CrossRefGoogle Scholar
  5. 5.
    Georgoulas S, Dahlmann-Noor A, Brocchini S, Khaw PT. Modulation of wound healing during and after glaucoma surgery. Prog Brain Res. 2008;173:237–54.CrossRefGoogle Scholar
  6. 6.
    Välimäki J, Uusitalo H. Immunohistochemical analysis of extracellular matrix bleb capsules of functioning and non-functioning glaucoma drainage implants. Acta Ophthalmol. 2014;92(6):524–8.CrossRefGoogle Scholar
  7. 7.
    Jung KI, Lee SB, Kim JH, Park CK. Foreign body reaction in glaucoma drainage implant surgery. Invest Ophthalmol Vis Sci. 2013;54(6):3957–64.CrossRefGoogle Scholar
  8. 8.
    Nakamura-Shibasaki M, Ko JA, Takenaka J, Chikama T, Sonoda KH, Kiuchi Y. Matrix metalloproteinase and cytokine expression in Tenon fibroblasts during scar formation after glaucoma filtration or implant surgery in rats. Cell Biochem Funct. 2013;31(6):482–8.CrossRefGoogle Scholar
  9. 9.
    Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006;12(7):1955–70.CrossRefGoogle Scholar
  10. 10.
    Jung KI, Lim SA, Park HY, Park CK. Visualization of blebs using anterior-segment optical coherence tomography after glaucoma drainage implant surgery. Ophthalmology. 2013;120(5):978–83.CrossRefGoogle Scholar
  11. 11.
    Thieme H, Choritz L, Hofmann-Rummelt C, Schloetzer-Schrehardt U, Kottler UB. Histopathologic findings in early encapsulated blebs of young patients treated with the Ahmed glaucoma valve. J Glaucoma. 2011;20(4):246–51.CrossRefGoogle Scholar
  12. 12.
    Ishida K, Netland PA, Costa VP, Shiroma L, Khan B, Ahmed II. Comparison of polypropylene and silicone Ahmed glaucoma valves. Ophthalmology. 2006;113(8):1320–6.CrossRefGoogle Scholar
  13. 13.
    Bhartiya S, Shaarawy T. Chapter 113: Surgical technique 3 (Ahmed glaucoma valve drainage implant). In: Boyle IV JW, Ryan McManus J, Netland PA, editors. Glaucoma. 2nd ed. Edinburgh: Elsevier Limited; 2015. p. 1078.Google Scholar
  14. 14.
    Fraser S. Trabeculectomy and antimetabolites. Br J Ophthalmol. 2004;88(7):855–6.CrossRefGoogle Scholar
  15. 15.
    European Glaucoma Society Editrice Dogma. Terminology and guidelines for glaucoma. 2nd ed. Savona, Italy: European Glaucoma Society Editrice Dogma; 2003.Google Scholar
  16. 16.
    Tripathi RC, Parapuram SK, Tripathi BJ, Zhong Y, Chalam KV. Corticosteroids and glaucoma risk. Drugs Aging. 1999;15(6):439–50.CrossRefGoogle Scholar
  17. 17.
    Clark AF, Wordinger RJ. The role of steroids in outflow resistance. Exp Eye Res. 2009;88(4):752–9.CrossRefGoogle Scholar
  18. 18.
    Yazdani S, Doozandeh A, Pakravan M, Ownagh V, Yaseri M. Adjunctive triamcinolone acetonide for Ahmed glaucoma valve implantation: a randomized clinical trial. Eur J Ophthalmol. 2016;27(4):411–6.CrossRefGoogle Scholar
  19. 19.
    Sisto D, Vetrugno M, Trabucco T, Cantatore F, Ruggeri G, Sborgia C. The role of antimetabolites in filtration surgery for neovascular glaucoma: intermediate-term follow-up. Acta Ophthalmol Scand. 2007;85(3):267–71.CrossRefGoogle Scholar
  20. 20.
    Greenfield DS, Liebmann JM, Jee J, Ritch R. Late-onset bleb leaks after glaucoma filtering surgery. Arch Ophthalmol. 1998;116(4):443–7.CrossRefGoogle Scholar
  21. 21.
    Higginbotham EJ, Stevens RK, Musch DC, et al. Bleb-related endophthalmitis after trabeculectomy with mitomycin C. Ophthalmology. 1996;103(4):650–6.CrossRefGoogle Scholar
  22. 22.
    Skuta GL, Beeson CC, Higginbotham EJ, et al. Intraoperative mitomycin versus postoperative 5-fluorouracil in high-risk glaucoma filtering surgery. Ophthalmology. 1992;99(3):438–44.CrossRefGoogle Scholar
  23. 23.
    Khaw PT, Sherwood MB, MacKay SL, Rossi MJ, Schultz G. Five- minute treatments with fluorouracil, floxuridine, and mitomycin have long-term effects on human Tenon’s capsule fibroblasts. Arch Ophthalmol. 1992;110(8):1150–4.CrossRefGoogle Scholar
  24. 24.
    Shapiro MS, Thoft RA, Friend J, Parrish RK, Gressel MG. 5-Fluorouracil toxicity to the ocular surface epithelium. Invest Ophthalmol Vis Sci. 1985;26(4):580–3.PubMedGoogle Scholar
  25. 25.
    Seong GJ, Park C, Kim CY, et al. Mitomycin-C induces the apoptosis of human Tenon’s capsule fibroblast by activation of c-Jun N-terminal kinase 1 and caspase-3 protease. Invest Ophthalmol Vis Sci. 2005;46(10):3545–52.CrossRefGoogle Scholar
  26. 26.
    Costa VP, Azuara-Blanco A, Netland PA, Lesk MR, Arcieri ES. Efficacy and safety of adjunctive mitomycin C during Ahmed glaucoma valve implantation: a prospective randomized clinical trial. Ophthalmology. 2004;11(6):1071–6.CrossRefGoogle Scholar
  27. 27.
    Kurnaz E, Kubaloglu A, Yilmaz Y, Koytak A, Ozerturk Y. The effect of adjunctive mitomycin C in Ahmed glaucoma valve implantation. Eur J Ophthalmol. 2005;15(1):27–31.CrossRefGoogle Scholar
  28. 28.
    Zhou M, Wang W, Huang W, Zhang X. Use of mitomycin C to reduce the incidence of encapsulated cysts following Ahmed glaucoma valve implantation in refractory glaucoma patients: a new technique. BMC Ophthalmol. 2014;14:107.CrossRefGoogle Scholar
  29. 29.
    Alvarado JA, Hollander DA, Juster RP, Lee LC. Ahmed valve implantation with adjunctive mitomycin C and 5-fluorouracil: long-term outcomes. Am J Ophthalmol. 2008;146(2):276–84.CrossRefGoogle Scholar
  30. 30.
    Tripathi RC, Li J, Chan WF, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-beta 2. Exp Eye Res. 1994;59(6):723–7.CrossRefGoogle Scholar
  31. 31.
    Cordeiro MF, Gay JA, Khaw PT. Human anti-transforming growth factor-beta2 antibody: a new glaucoma anti-scarring agent. Invest Ophthalmol Vis Sci. 1999;40(10):2225–34.PubMedGoogle Scholar
  32. 32.
    Li Z, Van Bergen T, Van de Veire S, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2009;50(11):5217–25.CrossRefGoogle Scholar
  33. 33.
    Van Bergen T, Vandewalle E, Van de Veire S, et al. The role of different VEGF isoforms in scar formation after glaucoma filtration surgery. Exp Eye Res. 2011;93(5):689–99.CrossRefGoogle Scholar
  34. 34.
    Iliev ME, Domig D, Wolf-Schnurrbursch U, et al. Intravitreal Bevacizumab (Avastin®) in the treatment of neovascular glaucoma. Am J Ophthalmol. 2006;142:1054–6.CrossRefGoogle Scholar
  35. 35.
    Li Z, Van Bergen T, Van de Veire S, Van de Vel I, Moreau H, Dewerchin M, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2009;50:5217–25.CrossRefGoogle Scholar
  36. 36.
    Mahdy RA. Adjunctive use of bevacizumab versus mitomycin C with Ahmed valve implantation in treatment of pediatric glaucoma. J Glaucoma. 2011;20:458–63.CrossRefGoogle Scholar
  37. 37.
    Miraftabi A, Nilforushan N. Wound dehiscence and device migration after subconjunctival bevacizumab injection with Ahmed glaucoma valve implantation. J Ophthalmic Vis Res. 2016;11(1):112–5.CrossRefGoogle Scholar
  38. 38.
    Xiong Q, Li Z, Zhu Y, et al. Anti-VEGF agents with or without antimetabolites in trabeculectomy for glaucoma: a meta-analysis. PLoS One. 2014;9(2):e88403.CrossRefGoogle Scholar
  39. 39.
    Van Bergen T, Moons L, Vandewalle E, et al. Complementary effects of bevacizumab and MMC in the improvement of surgical outcome after glaucoma filtration surgery. Acta Ophthalmol. 2015;93(7):667–78.CrossRefGoogle Scholar
  40. 40.
    Desai RU, Singh K, Lin SC. Intravitreal ranibizumab as an adjunct for Ahmed valve surgery in open-angle glaucoma: a pilot study. Clin Exp Ophthalmol. 2013;41:155–8.CrossRefGoogle Scholar
  41. 41.
    Rojo-Arnao M, Albis-Donado O, Literas-Cardin M, Kahook MY, Gil-Carrazco F. Adjunctive Bevacizumab in patients undergoing Ahmed Valve implantation: a pilot study. Ophthalmic Surg Lasers Imaging. 2011;42(2):132–7.PubMedGoogle Scholar
  42. 42.
    Popescu V, et al. Clinical use of Bevacizumab in treating refractory glaucoma. J Med Life. 2015;8:8–12.PubMedPubMedCentralGoogle Scholar
  43. 43.
    McIlraith I, Buys Y, Campbell RJ, Trope GE. Ocular massage for intraocular pressure control after Ahmed valve insertion. Can J Ophthalmol. 2008;43(1):48–52.CrossRefGoogle Scholar
  44. 44.
    Smith M, Geffen N, Alasbali T, Buys YM, Trope GE. Digital ocular massage for hypertensive phase after Ahmed valve surgery. J Glaucoma. 2010;19(1):11–4.CrossRefGoogle Scholar
  45. 45.
    Bhartiya S, Shaarawy T. Chapter 78: Tenon’s cyst formation, wound healing, and bleb evaluation. In: Shaarawy T, Sherwood M, Hitchings R, Crowston J, editors. Glaucoma. 2nd ed. Edinburgh: Elsevier Limited; 2015. p. 781.Google Scholar
  46. 46.
    Quaranta L, Floriani I, Hollander L, Poli D, Katsanos A, Konstas AG. Needle revision with 5-fluorouracil for the treatment of Ahmed glaucoma valve filtering blebs: 5-fluoruracil needling revision can be a useful and safe tool in the management of failing Ahmed glaucoma valve filtering blebs. J Glaucoma. 2016;25(4):e367–71.CrossRefGoogle Scholar
  47. 47.
    Eibschitz-Tsimhoni M, Schertzer RM, Musch DC, Moroi SE. Incidence and management of encapsulated cysts following Ahmed glaucoma valve insertion. J Glaucoma. 2005;14(4):276–9.CrossRefGoogle Scholar
  48. 48.
    Amoozgar B, Wei X, Hui Lee J, Bloomer M, Zhao Z, Coh P, He F, Luan L, Xie C, Han Y. A novel flexible microfluidic meshwork to reduce fibrosis in glaucoma surgery. PLoS One. 2016;12(3):e0172556.CrossRefGoogle Scholar
  49. 49.
    Jung KI, Park CK. Pirfenidone inhibits fibrosis in foreign body reaction after glaucoma drainage device implantation. Drug Design Devel Ther. 2016;10:1477–88.Google Scholar
  50. 50.
    Na JH, Sung KR, Shin JA, Moon JI. Antifibrotic effects of pirfenidone on Tenon’s fibroblasts in glaucomatous eyes: comparison with mitomycin C and 5-fluorouracil. Graefes Arch Clin Exp Ophthalmol. 2015;253:1537–47.CrossRefGoogle Scholar
  51. 51.
    Schoenberg ED, Blake DA, Swann FB, Parlin AW. Effect of two novel sustained-release drug delivery systems on bleb fibrosis: an in vivo glaucoma drainage device study in a rabbit model. Transl Vis Sci Technol. 2015;4:4–14.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nadia Ríos-Acosta
    • 1
  • Sonia Corredor-Casas
    • 2
  1. 1.University of ManitobaWinnipegCanada
  2. 2.Instituto Mexicano de OftalmologiaQueretaroMexico

Personalised recommendations