Skip to main content

Feedback Control

  • Chapter
  • First Online:
  • 600 Accesses

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

The open-loop control techniques, discussed in Chap. 6, are the most widely applied methods for controlling crane systems due to their easy and cost-effective application (i.e., feedback sensors are not required). However, they have serious limitations in dealing with nonlinearities , modeling uncertainties, and external disturbances. Therefore, such systems are feasible for only simple crane operations that can be carried out under controlled environments, for example, within an enclosure (such as a factory), where external disturbances such as wind cannot have significant impacts on the crane system. However, crane systems are also used for field or offshore operations and are exposed to external disturbances such as wind, sea currents, and waves. Furthermore, the repetitive nature of crane operations causes degradation and wear within the constituent parts of the support mechanism , which changes their friction-related properties, consequently resulting in modeling uncertainties. Therefore, to achieve the required performance of the crane in a challenging environment, either hybrid open- and closed-loop or solely feedback control strategies are pursued. First, we will discuss the feedback control strategies applied to crane systems, which mostly utilize the feedback of the sway angle of the payload and the position/velocity of the support mechanism (i.e., the trolley , bridge , boom, etc.) in generating control inputs (either force or torque) to the support mechanisms themselves in achieving both the sway suppression of the payload and the position control of the entire crane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alli H, Singh T (1999) Passive control of overhead cranes. J Vib Control 5(3):443–459

    Article  Google Scholar 

  • Al-mousa AA, Nayfeh AH, Kachroo P (2003) Control of rotary cranes using fuzzy logic. Shock Vib 10(2):81–95

    Article  Google Scholar 

  • Almutairi NB, Zribi M (2009) Sliding mode control of a three-dimensional overhead crane. J Vib Control 15(11):1679–1730

    Article  MathSciNet  MATH  Google Scholar 

  • Almutairi NB, Zribi M (2016) Fuzzy controllers for a gantry crane system with experimental verifications. Math Probl Eng. https://doi.org/10.1155/2016/1965923

    Article  MathSciNet  MATH  Google Scholar 

  • Azeloglu CO, Sagirli A, Edincliler A (2016) Vibration mitigation of nonlinear crane system against earthquake excitations with the self-tuning fuzzy logic PID controller. Nonlinear Dyn 84(4):1915–1928

    Article  Google Scholar 

  • Bartolini G, Pisano A, Usai E (2002) Second-order sliding-mode control of container cranes. Automatica 38(10):1783–1790

    Article  MathSciNet  MATH  Google Scholar 

  • Benhidjeb A, Gissinger GL (1995) Fuzzy control of an overhead crane performance comparison with classic control. Control Eng Practice 3(12):1687–1696

    Article  Google Scholar 

  • Bock M, Kugi A (2014) Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Trans Control Syst Technol 22(4):1461–1473

    Article  Google Scholar 

  • Chang CY (2007) Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans Ind Inform 3(2):164–172

    Article  Google Scholar 

  • Chang CY, Chiang KH (2008) Fuzzy projection control law and its application to the overhead crane. Mechatronics 18(10):607–615

    Article  Google Scholar 

  • Chang CY, Chiang KH (2009) Intelligent fuzzy accelerated method for the nonlinear 3-D crane control. Expert Syst Appl 36(3):5750–5752

    Article  Google Scholar 

  • Chang YC, Shaw JS (2012) Adaptive hierarchical sliding control of overhead crane system with haar wavelet function estimator. J Chinese Soc Mech Eng 33(3):193–202

    Google Scholar 

  • Chang CY, Hsu KC, Chiang KH et al (2008) Modified fuzzy variable structure control method to the crane system with control deadzone problem. J Vib Control 14(7):953–969

    Article  MATH  Google Scholar 

  • Chen WT, Saif M (2008) Output feedback controller design for a class of mimo nonlinear systems using high-order sliding-mode differentiators with application to a laboratory 3-D crane. IEEE Trans Ind Electron 55(11):3985–3997

    Article  Google Scholar 

  • Cheng CC, Chen CY (1996) Controller design for an overhead crane system with uncertainty. Control Eng Practice 4(5):645–653

    Article  Google Scholar 

  • Cho SK, Lee HH (2002) A fuzzy-logic antiswing controller for three-dimensional overhead cranes. ISA Trans 41(2):235–243

    Article  Google Scholar 

  • Cho H, Lee J, Lee Y et al (2008) Lyapunov theory based robust control of complicated nonlinear mechanical systems with uncertainty. J Mech Sci Technol 22(11):2142–2150

    Article  Google Scholar 

  • Chwa D (2009) Nonlinear tracking control of 3-D overhead cranes against the initial swing angle and the variation of payload weight. IEEE Trans Control Syst Technol 17(4):876–883

    Article  Google Scholar 

  • d’Andra-Novel B, Coron JM (2000) Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 36(4):587–593

    Article  MathSciNet  MATH  Google Scholar 

  • Erneux T, Kalmar-Nagy T (2007) Nonlinear stability of a delayed feedback controlled container crane. J Vib Control 13(5):603–616

    Article  MATH  Google Scholar 

  • Hayajneh MT, Radaideh SM, Smadi IA (2006) Fuzzy logic controller for overhead cranes. Eng Comput 23(1–2):84–98

    Article  MATH  Google Scholar 

  • He W, Ge SS, How BE et al (2011) Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4):722–732

    Article  MathSciNet  MATH  Google Scholar 

  • Hong K-S, Park BJ, Lee MH (2000) Two-stage control for container cranes. JSME Int J Ser C-Mech Syst Mach Elem Manuf 43(2):273–282

    Article  Google Scholar 

  • Hong K-S, Kim CW, Hong K-T (2004) Boundary control of an axially moving belt system in a thin-metal production line. Int J Control Autom Syst 2(1):55–67

    Google Scholar 

  • Huey JR, Sorensen KL, Singhose W (2008) Useful applications of closed-loop signal shaping controllers. Control Eng Practice 16(7):836–846

    Article  Google Scholar 

  • Jolevski D, Bego O (2015) Model predictive control of gantry/bridge crane with anti-sway algorithm. J Mech Sci Technol 29(2):827–834

    Article  Google Scholar 

  • Karkoub MA, Zribi M (2001) Robust control schemes for an overhead crane. J Vib Control 7(3):395–416

    Article  MATH  Google Scholar 

  • Kim CS, Hong K-S (2009) Boundary control of container cranes from the perspective of controlling an axially moving string system. Int J Control Autom Syst 7(3):437–445

    Article  Google Scholar 

  • Kim C-W, Hong K-S, Park H (2005a) Boundary control of an axially moving string: Actuator dynamics included. J Mech Sci Technol 1(1):40–50

    Article  Google Scholar 

  • Kim C-W, Park H, Hong K-S (2005b) Boundary control of axially moving continua: Application to a zinc galvanizing line. Int J Control Autom Syst 3(4):601–611

    Google Scholar 

  • Lee HH (1998) Modeling and control of a three-dimensional overhead crane. J Dyn Syst Meas Control-Trans ASME 120(4):471–476

    Article  Google Scholar 

  • Lee HH (2003) A new approach for the anti-swing control of overhead cranes with high-speed load hoisting. Int J Control 76(15):1493–1499

    Article  MathSciNet  MATH  Google Scholar 

  • Lee HH (2004) A new design approach for the anti-swing trajectory control of overhead cranes with high-speed hoisting. Int J Control 77(10):931–940

    Article  MathSciNet  MATH  Google Scholar 

  • Lee HH, Liang Y, Segura D (2006) A sliding-mode antiswing trajectory control for overhead cranes with high-speed load hoisting. J Dyn Syst Meas Control-Trans ASME 128(4):842–845

    Article  Google Scholar 

  • Li XO, Yu W (2012) Anti-swing control for an overhead crane with fuzzy compensation. Intell Autom Soft Comput 18(1):1–11

    Article  MathSciNet  Google Scholar 

  • Liang YC, Koh KK (1997) Concise anti-swing approach for fuzzy crane control. Electron Lett 33(2):167–168

    Article  Google Scholar 

  • Liu DT, Yi JQ, Zhao DB et al (2005) Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics 15(5):505–522

    Article  Google Scholar 

  • Mahfouf M, Kee CH, Abbod MF et al (2000) Fuzzy logic-based anti-sway control design for overhead cranes. Neural Comput Appl 9(1):38–43

    Article  Google Scholar 

  • Masoud ZN (2007) Oscillation control of quay-side container cranes using cable-length manipulation. J Dyn Syst Meas Control-Trans ASME 129(2):224–228

    Article  Google Scholar 

  • Masoud ZN, Nayfeh AH, Al-Mousa A (2003) Delayed position-feedback controller for the reduction of payload pendulations of rotary cranes. J Vib Control 9(1–2):257–277

    Article  MATH  Google Scholar 

  • Masoud ZN, Daqaq MF, Nayfeh NA (2004a) Pendulation reduction on small ship-mounted telescopic cranes. J Vib Control 10(8):1167–1179

    Google Scholar 

  • Masoud ZN, Nayfeh AH, Mook DT (2004b) Cargo pendulation reduction of ship-mounted cranes. Nonlinear Dyn 35(3):299–311

    Article  MATH  Google Scholar 

  • Moustafa KAF, Ismail MIS, Gad EH et al (2006) Fuzzy control of flexible cable overhead cranes with load hoisting. Trans Inst Meas Control 28(4):371–386

    Article  Google Scholar 

  • Nayfeh NA, Baumann WT (2008) Nonlinear analysis of time-delay position feedback control of container cranes. Nonlinear Dyn 53(1–2):75–88

    Article  MATH  Google Scholar 

  • Neupert J, Arnold E, Schneider K (2010) Tracking and anti-sway control for boom cranes. Control Eng Practice 18(1):31–44

    Article  Google Scholar 

  • Ngo QH, Hong K-S (2012) Adaptive sliding mode control of container cranes. IET Contr Theory Appl 6(5):662–668

    Article  MathSciNet  Google Scholar 

  • Ngo QH, Hong K-S, Jung IH (2009) Adaptive control of an axially moving system. J Mech Sci Technol 23(11):3071–3078

    Article  Google Scholar 

  • Ngo QH, Nguyen NP, Nguyen CN et al (2015) Fuzzy sliding mode control of container cranes. Int J Control Autom Syst 13(2):419–425

    Article  Google Scholar 

  • Nguyen HT (1994) State-variable feedback controller for an overhead crane. J Elect Electronics Eng 14(12):75–84

    Google Scholar 

  • Nguyen QC, Hong K-S (2012a) Simultaneous control of longitudinal and transverse vibrations of an axially moving string with velocity tracking. J Sound Vibr 331(13):3006–3019

    Article  Google Scholar 

  • Nguyen QC, Hong K-S (2012b) Transverse vibration control of axially moving membranes by regulation of axial velocity. IEEE Trans Control Syst Technol 20(4):1124–1131

    Article  Google Scholar 

  • Omar F, Karray F, Basir O et al (2004) Autonomous overhead crane system using a fuzzy logic controller. J Vib Control 10(9):1255–1270

    MATH  Google Scholar 

  • Park H, Le NT (2012) Modeling and controlling the mobile harbour crane system with virtual prototyping technology. Int J Control Autom Syst 10(6):1204–1214

    Article  Google Scholar 

  • Park H, Chwa D, Hong K-S (2007) A feedback linearization control of container cranes: varying rope length. Int J Control Autom Syst 5(4):379–387

    Google Scholar 

  • Park MS, Chwa D, Hong SK (2008) Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans Ind Electron 55(11):3972–3984

    Article  Google Scholar 

  • Piazzi A, Visioli A (2002) Optimal dynamic-inversion-based control of an overhead crane. IEE Proc-Control Theory Appl 149(5):405–411

    Article  Google Scholar 

  • Qian DW, Tong SW, Lee S (2016) Fuzzy-logic-based control of payloads subjected to double-pendulum motion in overhead cranes. Autom Constr 65:133–143

    Article  Google Scholar 

  • Rahn CD, Zhang FM, Joshi S et al (1999) Asymptotically stabilizing angle feedback for a flexible cable gantry crane. J Dyn Syst Meas Control-Trans ASME 121(3):563–566

    Article  Google Scholar 

  • Sakawa Y, Nakazumi A (1985) Modeling and control of a rotary crane. J Dyn Syst Meas Control-Trans ASME 107(3):200–206

    Article  MATH  Google Scholar 

  • Sato K, Sakawa Y (1988) Modelling and control of a flexible rotary crane. Int J Control 48(5):2085–2105

    Article  MathSciNet  MATH  Google Scholar 

  • Sawodny O, Aschemann H, Lahres S (2002) An automated gantry crane as a large workspace robot. Control Eng Practice 10(12):1323–1338

    Article  Google Scholar 

  • Shah UH, Hong K-S (2018) Active vibration control of a flexible rod moving in water: application to nuclear refueling machines. Automatica 93:231–243

    Article  MathSciNet  MATH  Google Scholar 

  • Slotine JJE, Li W (1991) Applied Nonlinear Control. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Smoczek J (2014) Fuzzy crane control with sensorless payload deflection feedback for vibration reduction. Mech Syst Signal Proc 46(1):70–81

    Article  Google Scholar 

  • Smoczek J (2015) Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system. Mech Syst Signal Proc 62–63:324–340

    Article  Google Scholar 

  • Smoczek J, Szpytko J (2014) Evolutionary algorithm-based design of a fuzzy TBF predictive model and TSK fuzzy anti-sway crane control system. Eng Appl Artif Intell 28:190–200

    Article  Google Scholar 

  • Solihin MI, Wahyudi, Legowo A (2010) Fuzzy-tuned PID anti-swing control of automatic gantry crane. J Vib Control 16(1):127–145

    Article  MATH  Google Scholar 

  • Sucevic M, Novakovic B, Crnekovic M (2004) Control of a load hoisting and transfering using analytic fuzzy logic controller. Strojarstvo 46(4–6):125–136

    Google Scholar 

  • Sun N, Fang YC, Chen H (2015) A new antiswing control method for underactuated cranes with unmodeled uncertainties: theoretical design and hardware experiments. IEEE Trans Ind Electron 62(1):453–465

    Article  Google Scholar 

  • Trabia MB, Renno JM, Moustafa KAF (2008) Generalized design of an anti-swing fuzzy logic controller for an overhead crane with hoist. J Vib Control 14(3):319–346

    Article  MATH  Google Scholar 

  • Tuan LA, Lee SG (2013) Sliding mode controls of double-pendulum crane systems. J Mech Sci Technol 27(6):1863–1873

    Article  Google Scholar 

  • Van den Broeck L, Diehl M, Swevers J (2011) A model predictive control approach for time optimal point-to-point motion control. Mechatronics 21(7):1203–1212

    Article  Google Scholar 

  • Vazquez C, Collado J, Fridman L (2014) Super twisting control of a parametrically excited overhead crane. J Frankl Inst-Eng Appl Math 351(4):2283–2298

    Article  MathSciNet  MATH  Google Scholar 

  • Vazquez C, Fridman L, Collado J et al (2015) Second-order sliding mode control of a perturbed-crane. J Dyn Syst Meas Control-Trans ASME 137(8):081010

    Article  Google Scholar 

  • Wang W, Yi J, Zhao D et al (2004) Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proc-Control Theory Appl 151(6):683–690

    Article  Google Scholar 

  • Wang W, Liu XD, Yi JQ (2007) Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems. IET Control Theory Appl 1(1):163–172

    Article  MathSciNet  Google Scholar 

  • Wu XQ, He XX (2016) Partial feedback linearization control for 3-D underactuated overhead crane systems. ISA Trans 65:361–370

    Article  Google Scholar 

  • Xi Z, Hesketh T (2010) Discrete time integral sliding mode control for overhead crane with uncertainties. IET Contr Theory Appl 4(10):2071–2081

    Article  MathSciNet  Google Scholar 

  • Yakut O (2014) Application of intelligent sliding mode control with moving sliding surface for overhead cranes. Neural Comput Appl 24(6):1369–1379

    Article  Google Scholar 

  • Yang K-J, Hong K-S, Matsuno F (2004a) Boundary control of an axially moving steel strip under a spatiotemporally varying tension. JSME Int J Ser C-Mech Syst Mach Elem Manuf 47(2):665–674

    Article  Google Scholar 

  • Yang K-J, Hong K-S, Matsuno F (2004b) Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J Sound Vibr 273(4–5):1007–1029

    Article  MathSciNet  MATH  Google Scholar 

  • Yang K-J, Hong K-S, Matsuno F (2005a) Boundary control of a translating tensioned beam with varying speed. IEEE-ASME Trans Mechatron 10(5):594–597

    Article  Google Scholar 

  • Yang K-J, Hong K-S, Matsuno F (2005b) Robust boundary control of an axially moving string by using a PR transfer function. IEEE Trans Autom Control 50(12):2053–2058

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshimoto T, Sakawa Y (1989) Modelling and control of a rotary crane with a flexible joint. Optim Control Appl Methods 10(1):21–38

    Article  MathSciNet  MATH  Google Scholar 

  • Yu W, Moreno-Armendariz MA, Rodriguez FO (2011) Stable adaptive compensation with fuzzy CMAC for an overhead crane. Inf Sci 181(21):4895–4907

    Article  MathSciNet  MATH  Google Scholar 

  • Zdesar A, Cerman O, Dovzan D et al (2013) Fuzzy control of a helio-crane. J Intell Robot Syst 72(3–4):497–515

    Article  Google Scholar 

  • Zhang HY, Wang J, Lu GD (2014a) Hierarchical fuzzy-tuned multiobjective optimization control for gantry cranes. Proc Inst Mech Eng Part C-J Mech Eng Sci 228(7):1119–1131

    Article  Google Scholar 

  • Zhang HY, Wang J, Lu GD (2014b) Self-organizing fuzzy optimal control for under-actuated systems. Proc Inst Mech Eng Part I-J Syst Control Eng 228(8):578–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keum-Shik Hong .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, KS., Shah, U.H. (2019). Feedback Control. In: Dynamics and Control of Industrial Cranes. Advances in Industrial Control. Springer, Singapore. https://doi.org/10.1007/978-981-13-5770-1_7

Download citation

Publish with us

Policies and ethics