Skip to main content

Using a Tri-Isotope (13C, 15N, 33P) Labelling Method to Quantify Rhizodeposition

  • Chapter
  • First Online:
Methods in Rhizosphere Biology Research

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Belowground (BG) plant resource allocation, including roots and rhizodeposition, is a major source of soil organic matter. Knowledge on the amounts and turnover of BG carbon (C), nitrogen (N), and phosphorus (P) in soil is critical to the understanding of how these elements cycle in soil-plant system. However, the assumptions underlying the quantification and tracking of rhizodeposition using isotope labeling methods have hardly been tested. The main objectives of this chapter were to (i) review the different plant labeling techniques for each of the three elements; (ii) describe a novel method for the simultaneous investigation of C, N, and P rhizodeposition in sand; and (iii) test the methodological assumptions underlying quantification of rhizodeposition. Stable 13C and 15N isotopes were widely used to study rhizodeposition of plants either separately or in combination, while P radioisotopes (32P, 33P) were used to investigate root distribution. The combination of the 13CO2 single-pulse labeling with the simultaneous 15N and 33P cotton-wick stem feeding effectively labeled Canavalia brasiliensis roots and facilitated the estimation of rhizodeposited C, N, and P input from root systems. However, the isotope distribution was uneven within the root system for all three elements. Additionally, we observed a progressive translocation from shoot to roots for 15N and 33P over 15 days after labeling, while the 13C tracer was diluted with newly assimilated non-enriched C compounds over time. Younger root sections also showed higher specific activities (33P/31P) than the older ones. The relatively high 33P radioactivity recovered in sand right away at the first sampling was attributed to an artifact generated by the stem feeding labeling method. Overall, our results suggest that the assumptions underlying the use of isotope methods for studying rhizodeposition are violated, which will affect the extent of quantification of rhizodeposition. The consequences of nonhomogeneous labeling of root segments of different age require further investigation. The use of a time-integrated isotopic composition of the root is recommended to not only account for temporal variation of isotopes but also to improve the method of quantifying plant rhizodeposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott ML, Fraley L (1991) A review: radiotracer methods to determine root distribution. Environ Exp Bot 31:1–10

    Article  Google Scholar 

  • Aulakh MS, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3:139–148

    Article  CAS  Google Scholar 

  • Bekkara F, Jay M, Viricel MR, Rome S (1998) Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 203:27–36

    Article  Google Scholar 

  • Bromand S, Whalen JK, Janzen HH, Schjoerring JK, Ellert BH (2001) A pulse-labelling method to generate 13C- enriched plant materials. Plant Soil 235:253–257

    Article  CAS  Google Scholar 

  • Brophy LS, Heichel GH (1989) Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant Soil 116:77–84

    Article  CAS  Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Article  CAS  Google Scholar 

  • Chalk PM, Peoples MB, McNeill AM, Boddey RM, Unkovich MJ, Gardener MJ, Silva CF, Chen D (2014) Methodologies for estimating nitrogen transfer between legumes and companion species in agro-ecosystems: a review of 15N-enriched techniques. Soil Biol Biochem 73:10–21

    Article  CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D Don.). Soil Biol Biochem 34:487–499

    Article  CAS  Google Scholar 

  • Cholick FA, Welsh JR, Cole VC (1977) Rooting patterns of semi-dwarf and tall winter wheat cultivars under dryland field conditions. Crop Sci 17:637–639

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • De Graaff M-A, Six J, Van Kessel C (2007) Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen. New Phytol 173:778–786

    Article  PubMed  CAS  Google Scholar 

  • De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163–1170

    Article  Google Scholar 

  • Douxchamps S, Humbert F-L, van der Hoek R, Mena M, Bernasconi SM, Schmidt A, Rao I, Frossard E, Oberson A (2010) Nitrogen balances in farmers fields under alternative uses of a cover crop legume: a case study from Nicaragua. Nutr Cycl Agroecosyst 88:447–462

    Article  Google Scholar 

  • Ehlers K, Bakken LR, Frostegård Å, Frossard E, Bünemann EK (2010) Phosphorus limitation in a Ferralsol: impact on microbial activity and cell internal P pools. Soil Biol Biochem 42:558–566

    Article  CAS  Google Scholar 

  • Emmert FH (1959) Loss of phosphorus-32 by plant roots after foliar application. 12. Plant Physiol 34:449–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyjunnessa, McNeill A, Doolette A, Mason S, McLaughlin MJ (2014) In situ 33P-labelling of canola and lupin to estimate total phosphorus accumulation in the root system. Plant Soil 382:291–299

    Article  CAS  Google Scholar 

  • Foyjunnessa, McNeill A, Doolette A, Mason S, McLaughlin MJ (2015) Quantifying total phosphorus accumulation below-ground by canola and lupin plants using 33P-labelling. Plant Soil 401:1–12

    Google Scholar 

  • Foyjunnessa, McNeill A, Doolette A, Mason S, McLaughlin MJ (2016) Use of 33P to trace in situ the fate of canola below-ground phosphorus, including wheat uptake in two contrasting soils. Crop Pasture Sci 67:726–738

    Article  CAS  Google Scholar 

  • Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30:57–66

    Article  CAS  Google Scholar 

  • Gasser M, Hammelehle A, Oberson A, Frossard E, Mayer J (2015) Quantitative evidence of overestimated rhizodeposition using 15N leaf-labelling. Soil Biol Biochem 85:10–20

    Article  CAS  Google Scholar 

  • Gijsman AJ, Alarcón HF, Thomas RJ (1997) Root decomposition in tropical grasses and legumes, as affected by soil texture and season. Soil Biol Biochem 29:1443–1450

    Article  CAS  Google Scholar 

  • Gregory PJ (2006) Development and growth of root systems. In: Plant roots. Blackwell Publishing Ltd, Oxford, pp 45–79

    Chapter  Google Scholar 

  • Ha KV, Marschner P, Bünemann EK (2008) Dynamics of C, N, P and microbial community composition in particulate soil organic matter during residue decomposition. Plant Soil 303:253–264

    Article  CAS  Google Scholar 

  • Halstead EH, Rennie DA (1965) The movement of Injected P32 throughout the wheat plant. Can J Bot 43:1359–1366

    Article  CAS  Google Scholar 

  • Hammelehle A, Oberson A, Lüscher A, Mäder P, Mayer J (2018) Above- and below-ground nitrogen distribution of a red clover-perennial ryegrass sward along a soil nutrient availability gradient established by organic and conventional cropping systems. Plant Soil 371:1–19

    Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  CAS  PubMed  Google Scholar 

  • Hupe A, Schulz H, Bruns C, Joergensen RG, Wichern F (2016) Digging in the dirt – Inadequacy of belowground plant biomass quantification. Soil Biol Biochem 96:137–144

    Article  CAS  Google Scholar 

  • Janzen HH (1990) Deposition of nitrogen into the rhizosphere by wheat roots. Soil Biol Biochem 22:1155–1160

    Article  CAS  Google Scholar 

  • Janzen HH, Bruinsma Y (1989) Methodology for the quantification of root and rhizosphere nitrogen dynamics by exposure of shoots to 15N-labelled ammonia. Soil Biol Biochem 21:189–196

    Article  CAS  Google Scholar 

  • Jemo M, Abaidoo RC, Nolte C, Tchienkoua M, Sanginga N, Horst WJ (2006) Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon. Plant Soil 284:385–397

    Article  CAS  Google Scholar 

  • Jensen ES (1996) Rhizodeposition of N by pea and barley and its effect on soil N dynamics. Soil Biol Biochem 28:65–71

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones JB (2012) In: CRC Press (ed) Plant nutrition and soil fertility manual, 2nd edn. Taylor & Francis Group, Boca Raton

    Chapter  Google Scholar 

  • Jones DL, Darrah PR (1996) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere. Plant Soil 178:153–160

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Khan WDF, Peoples MB, Herridge DF (2002) Quantifying below-ground nitrogen of legumes. Plant Soil 245:327–334

    Article  CAS  Google Scholar 

  • Kong AYY, Six J (2010) Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci Soc Am J 74:1201

    Article  CAS  Google Scholar 

  • Kušlienė G, Rasmussen J, Kuzyakov Y, Eriksen J (2014) Medium-term response of microbial community to rhizodeposits of white clover and ryegrass and tracing of active processes induced by 13C and 15N labelled exudates. Soil Biol Biochem 76:22–33

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Rev Z Pflanzenernähr Bodenkd 163:421–431

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Schneckenberger K (2004) Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Arch Agron Soil Sci 50:115–132

    Article  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Lemming C, Oberson A, Hund A, Jensen LS, Magid J (2016) Opportunity costs for maize associated with localised application of sewage sludge derived fertilisers, as indicated by early root and phosphorus uptake responses. Plant Soil 406:1–17

    Article  CAS  Google Scholar 

  • Lesuffleur F, Salon C, Jeudy C, Cliquet JB (2013) Use of a 15N2 labelling technique to estimate exudation by white clover and transfer to companion ryegrass of symbiotically fixed N. Plant Soil 369:187–197

    Article  CAS  Google Scholar 

  • Louw-Gaume AE, Schweizer N, Rao IM, Gaume AJ, Frossard E (2017) Temporal differences in plant growth and root exudation of two Brachiaria grasses in response to low phosphorus supply. Trop Grasslands – Forrajes Tropicales 5:103–116

    Article  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Article  CAS  Google Scholar 

  • Mahieu S, Fustec J, Jensen ES, Crozat Y (2009) Does labelling frequency affect N rhizodeposition assessment using the cotton-wick method? Soil Biol Biochem 41:2236–2243

    Article  CAS  Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Heß J (2003a) Estimating N rhizodeposition of grain legumes using a 15N in situ stem labelling method. Soil Biol Biochem 35:21–28

    Article  CAS  Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Heß J (2003b) Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant Soil 255:541–554

    Article  CAS  Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Heß J (2004) Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residues. Biol Fertil Soils 39:153–164

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Alston AM, Martin JK (1987) Transformations and movement of P in the rhizosphere. Plant Soil 97:391–399

    Article  CAS  Google Scholar 

  • McNeill AM, Zhu C, Fillery IRP (1997) Use of in situ 15N-labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil–plant systems. Aust J Agric Res 48:295–304

    Article  Google Scholar 

  • Meharg AA (1994) A critical review of labelling techniques used to quantify rhizosphere carbon-flow. Plant Soil 166:55–62

    Article  CAS  Google Scholar 

  • Meharg AA, Killham K (1988) A comparison of carbon flow from pre-labelled and pulse-labelled plants. Plant Soil 112:225–231

    Article  Google Scholar 

  • Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance+. Z Pflanzenernähr Bodenkd 162:373–383

    Article  CAS  Google Scholar 

  • Merbach W, Schulze J, Richert M, Rrocco E, Mengel K (2000) A comparison of different 15N application techniques to study the N net rhizodeposition in the plant-soil system. Z Pflanzenernähr Bodenkd 163:375–379

    Article  CAS  Google Scholar 

  • Moore RF (1949) Downward translocation of phosphorus in separated maize roots. Am J Bot 36:166–169

    Article  CAS  Google Scholar 

  • Neumann G (2007) Root exudates and nutrient cycling. In: Marschner DP, Rengel PDZ (eds) Nutrient cycling in terrestrial ecosystems, soil biology. Springer, Berlin Heidelberg, pp 123–157

    Chapter  Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant physiological status. In: The rhizosphere, books in soils, plants, and the environment. CRC Press, New York, pp 23–72

    Google Scholar 

  • Neumann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere—the plant science toolbox. Plant Soil 321:431–456

    Article  CAS  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plant: mechanisms and controls. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Houten, pp 97–123

    Google Scholar 

  • Nziguheba G, Merckx R, Palm CA, Rao MR (2000) Organic residues affect phosphorus availability and maize yields in a Nitisol of western Kenya. Biol Fertil Soils 32:328–339

    Article  CAS  Google Scholar 

  • Oberson A, Joner EJ (2005) Microbial turnover of phosphorus in soil. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 133–164

    Chapter  Google Scholar 

  • Palta J, Fillery I, Mathews E, Turner N (1991) Leaf feeding of [15N]urea for labelling wheat with nitrogen. Funct Plant Biol 18:627–636

    Article  CAS  Google Scholar 

  • Pausch J, Kuzyakov Y (2011) Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging. Z Pflanzenernähr Bodenkd 174:12–19

    Article  CAS  Google Scholar 

  • Pausch J, Kuzyakov Y (2017) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Chang Biol 24:1–12

    Article  PubMed  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol 112:591–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putz B, Drapela T, Wanek W, Schmidt O, Frank T, Zaller JG (2011) A simple method for in situ-labelling with 15N and 13C of grassland plant species by foliar brushing. Methods Ecol Evol 2:326–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Racz GJ, Rennie DA, Hutcheon WL (1964) The P32 injection method for studying the root system of wheat. Can J Soil Sci 44:100–108

    Article  Google Scholar 

  • Rao IM, Borrero V, Ricaurte J, Garcia R, Ayarza MA (1996) Adaptive attributes of tropical forage species to acid soils II. Differences in shoot and root growth responses to varying phosphorus supply and soil type. J Plant Nutr 19:323–352

    Article  CAS  Google Scholar 

  • Rao IM, Borrero V, Ricaurte J, Garcia R (1999) Adaptive attributes of tropical forage species to acid soils. IV. Differences in shoot and root growth responses to inorganic and organic phosphorus sources. J Plant Nutr 22:1153–1174

    Article  CAS  Google Scholar 

  • Rasmussen J (2011) Why we need to restrict the use of “rhizodeposition” and the Janzen and Bruinsma equation. Soil Biol Biochem 43:2213–2214

    Article  CAS  Google Scholar 

  • Rasmussen J, Kusliene G, Jacobsen OS, Kuzyakov Y, Eriksen J (2013) Bicarbonate as tracer for assimilated C and homogeneity of 14C and 15N distribution in plants by alternative labeling approaches. Plant Soil 371:191–198

    Article  CAS  Google Scholar 

  • Ritz K, Newman EI (1985) Evidence for rapid cycling of phosphorus from dying roots to living plants. Oikos 45:174–180

    Article  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    Article  CAS  Google Scholar 

  • Rovira AD, Bowen GD (1970) Translocation and loss of phosphate along roots of wheat seedlings. Planta 93:15–25

    Article  CAS  PubMed  Google Scholar 

  • Russell C, Fillery I (1996) In situ 15N labelling of lupin below-ground biomass. Aust J Agric Res 47:1035–1046

    Article  CAS  Google Scholar 

  • Sawatsky N, Soper RJ (1991) A quantitative measurement of the nitrogen loss from the root system of field peas (Pisum avense L.) grown in the soil. Soil Biol Biochem 23:255–259

    Article  CAS  Google Scholar 

  • Schenckzu Schweinsberg-Mickan M, Joergensen RG, Müller T (2010) Fate of 13C- and 15N-labelled rhizodeposition of Lolium perenne as function of the distance to the root surface. Soil Biol Biochem 42:910–918

    Article  CAS  Google Scholar 

  • Schenckzu Schweinsberg-Mickan M, Jörgensen RG, Müller T (2012) Rhizodeposition: Its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere. Z Pflanzenernähr Bodenkd 175:750–760

    Article  CAS  Google Scholar 

  • Schmidt O, Scrimgeour CM (2001) A simple urea leaf-feeding method for the production of 13C and 15N labelled plant material. Plant Soil 229:197–202

    Article  CAS  Google Scholar 

  • Sierra J, Daudin D, Domenach A-M, Nygren P, Desfontaines L (2007) Nitrogen transfer from a legume tree to the associated grass estimated by the isotopic signature of tree root exudates: a comparison of the 15N leaf feeding and natural 15N abundance methods. Eur J Agron 27:178–186

    Article  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (2012) Handbook for rhizobia: methods in legume-rhizobium technology. Springer Science & Business Media, New York

    Google Scholar 

  • Soon Y, Arshad M (2002) Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues. Biol Fertil Soils 36:10–17

    Article  CAS  Google Scholar 

  • Sparling GP, Cheshire MV, Mundie CM (1982) Effect of barley plants on the decomposition of 14C-labelled soil organic matter. J Soil Sci 33:89–100

    Article  Google Scholar 

  • Studer MS, Siegwolf RTW, Abiven S (2014) Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13CO2 labelling techniques. Biogeosciences 11:1637–1648

    Article  CAS  Google Scholar 

  • Subbiah BV, Katyal JC, Narasimham RL, Dakshinamurti C (1968) Preliminary investigations on root distribution of high yielding wheat varieties. Int J Appl Radiat and Isot 19:385–390

    Article  Google Scholar 

  • Swinnen J (1994) Rhizodeposition and turnover of root-derived organic material in barley and wheat under conventional and integrated management. Agricult Ecosyst Environ, Soil Ecol Convent Integrated Arable Farming Sys 51:115–128

    Google Scholar 

  • Swinnen J, Van Veen JA, Merckx R (1994) 14C pulse-labelling of field-grown spring wheat: an evaluation of its use in rhizosphere carbon budget estimations. Soil Biol Biochem 26:161–170

    Article  Google Scholar 

  • Ta TC, Faris MA, Macdowall FDH (1989) Evaluation of 15N methods to measure nitrogen transfer from alfalfa to companion timothy. Plant Soil 114:243–247

    Article  CAS  Google Scholar 

  • Unkovich M, Pate J, Sanford P, Armstrong E (1994) Potential precision of the δ15N natural abundance method in field estimates of nitrogen fixation by crop and pasture legumes in south-west Australia. Aust J Agric Res 45:119–132

    Article  Google Scholar 

  • Uren N (2001) Types, Amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: The rhizosphere—biogeochemistry and organic substances at the soil–plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Vanlauwe B, Diels J, Duchateau L, Sanginga N, Merckx R (1998) Mineral N dynamics in bare and cropped Leucaena leucocephala and Dactyladenia barteri alley cropping systems after the addition of 15N-labelled leaf residues. Eur J Soil Sci 49:417–425

    Article  Google Scholar 

  • Vijayalakshmi K, Dakshinamurti C (1977) Limitations of the 32P isotope injection technique for the study of the root systems of wheat, mung and cowpeas. Plant Soil 46:113–125

    Article  CAS  Google Scholar 

  • Warembourg FR, Montange D, Bardin R (1982) The simultaneous use of 14CO2 and 15N2 labelling techniques to study the carbon and nitrogen economy of legumes grown under natural conditions. Physiol Plant 56:46–55

    Article  CAS  Google Scholar 

  • Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 Concentration. Plant Physiol 120:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigl J (1968) Austausch-Mechanismus des Ionentransports in Pflanzen am Beispiel des Phosphat- und Chloridtransports bei Maiswurzeln. Planta 79:197–207

    Article  CAS  PubMed  Google Scholar 

  • Wichern F, Mayer J, Joergensen RG, Müller T (2007a) Rhizodeposition of C and N in peas and oats after 13C–15N double labelling under field conditions. Soil Biol Biochem 39:2527–2537

    Article  CAS  Google Scholar 

  • Wichern F, Mayer J, Joergensen RG, Müller T (2007b) Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biol Biochem 39:2829–2839

    Article  CAS  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

  • Wichern F, Andreeva D, Joergensen RG, Kuzyakov Y (2011) Stem labeling results in different patterns of 14C rhizorespiration and 15N distribution in plants compared to natural assimilation pathways. Z Pflanzenernähr Bodenkd 174:732–741

    Article  CAS  Google Scholar 

  • Yasmin K, Cadisch G, Baggs EM (2006) Comparing 15N-labelling techniques for enriching above- and below-ground components of the plant-soil system. Soil Biol Biochem 38:397–400

    Article  CAS  Google Scholar 

  • Yasmin K, Cadisch G, Baggs EM (2010) The significance of below-ground fractions when considering N and C partitioning within chickpea (Cicer arietinum L.). Plant Soil 327:247–259

    Article  CAS  Google Scholar 

  • Zang H, Yang X, Feng X, Qian X, Hu Y, Ren C, Zeng Z (2015) Rhizodeposition of nitrogen and carbon by mungbean (Vigna radiata L.) and its contribution to intercropped oats (Avena nuda L.). PLoS One 10(3):e0121132

    Google Scholar 

Download references

Acknowledgments

The authors are really grateful for the funding from the Swiss National Science Foundation (Project no. 200021_153600) and ETH Zürich for laboratory facilities. For isotope analyses, we also thank Federica Tamburini from the Plant Nutrition group (ETHZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Stevenel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevenel, P., Frossard, E., Abiven, S., Rao, I.M., Tamburini, F., Oberson, A. (2019). Using a Tri-Isotope (13C, 15N, 33P) Labelling Method to Quantify Rhizodeposition. In: Reinhardt, D., Sharma, A. (eds) Methods in Rhizosphere Biology Research. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-13-5767-1_10

Download citation

Publish with us

Policies and ethics