Skip to main content

IoT-Enabled Distributed Detection of a Nuclear Radioactive Source via Generalized Score Tests

  • Conference paper
  • First Online:
Advances in Signal Processing and Intelligent Recognition Systems (SIRS 2018)

Abstract

A decentralized detection method is proposed for revealing a radioactive nuclear source with unknown intensity and at unknown location, using a number of cheap radiation counters, to ensure public safety in smart cities. In the source present case, sensors nodes record an (unknown) emitted Poisson-distributed radiation count with a rate decreasing with the sensor-source distance (which is unknown), buried in a known Poisson background and Gaussian measurement noise. To model energy-constrained operations usually encountered in an Internet of Things (IoT) scenario, local one-bit quantizations are made at each sensor over a period of time. The sensor bits are collected via error-prone binary symmetric channels by the Fusion Center (FC), which has the task of achieving a better global inference. The considered model leads to a one-sided test with parameters of nuisance (i.e., the source position) observable solely in the case of \(\mathcal {H}_{1}\) hypothesis. Aiming at reducing the higher complexity requirements induced by the generalized likelihood ratio test, Davies’ framework is exploited to design a generalized form of the locally optimum detection test and an optimization of sensor thresholds (resorting to a heuristic principle) is proposed. Simulation results verify the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is \(|\theta _{1}-\theta _{0}|=c/\sqrt{K}\) for a certain value \(c>0\) [27].

  2. 2.

    By doing a slight notation abuse, we adopt the notation \(\mathrm {I}(\theta ,\varvec{x}_{T},\varvec{\tau })\) (resp. \(\psi _{k,0}(\tau _{k})\) and \(\beta _{k,0}(\tau _{k})\)) in the place of \(\mathrm {I}(\theta ,\varvec{x}_{T})\) (resp. \(\psi _{k,0}\) and \(\beta _{k,0}\)) to highlight their parametric dependence on the local thresholds \(\tau _{k}\)’s.

References

  1. Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through Internet of Things. IEEE Internet Things J. 1(2), 112–121 (2014)

    Article  Google Scholar 

  2. Varshney, P.K.: Distributed Detection and Data Fusion, 1st edn. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-1904-0

    Book  Google Scholar 

  3. Coaffee, J., Moore, C., Fletcher, D., Bosher, L.: Resilient design for community safety and terror-resistant cities. In: Proceedings of the Institution of Civil Engineers-Municipal Engineer, vol. 161, pp. 103–110. Thomas Telford Ltd. (2008)

    Google Scholar 

  4. Brennan, S.M., Mielke, A.M., Torney, D.C., MacCabe, A.B.: Radiation detection with distributed sensor networks. IEEE Comput. 37(8), 57–59 (2004)

    Article  Google Scholar 

  5. Brennan, S.M., Mielke, A.M., Torney, D.C.: Radioactive source detection by sensor networks. IEEE Trans. Nucl. Sci. 52(3), 813–819 (2005)

    Article  Google Scholar 

  6. Stephens, D.L., Peurrung, A.J.: Detection of moving radioactive sources using sensor networks. IEEE Trans. Nucl. Sci. 51(5), 2273–2278 (2004)

    Article  Google Scholar 

  7. Pahlajani, C.D., Poulakakis, I., Tanner, H.G.: Networked decision making for Poisson processes with applications to nuclear detection. IEEE Trans. Autom. Control 59(1), 193–198 (2014)

    Article  Google Scholar 

  8. Pahlajani, C.D., Sun, J., Poulakakis, I., Tanner, H.G.: Error probability bounds for nuclear detection: improving accuracy through controlled mobility. Automatica 50(10), 2470–2481 (2014)

    Article  MathSciNet  Google Scholar 

  9. Morelande, M., Ristic, B., Gunatilaka, A.: Detection and parameter estimation of multiple radioactive sources. In: 10th International Conference on Information Fusion (FUSION), pp. 1–7 (2007)

    Google Scholar 

  10. Morelande, M.R., Ristic, B.: Radiological source detection and localisation using Bayesian techniques. IEEE Trans. Signal Process. 57(11), 4220–4231 (2009)

    Article  MathSciNet  Google Scholar 

  11. Ristic, B., Morelande, M., Gunatilaka, A.: Information driven search for point sources of gamma radiation. Signal Process. 90(4), 1225–1239 (2010)

    Article  Google Scholar 

  12. Hoballah, I.Y., Varshney, P.K.: Distributed Bayesian signal detection. IEEE Trans. Inf. Theory 35(5), 995–1000 (1989)

    Article  MathSciNet  Google Scholar 

  13. Reibman, A.R., Nolte, L.W.: Optimal detection and performance of distributed sensor systems. IEEE Trans. Aerosp. Electron Syst. 1, 24–30 (1987)

    Article  Google Scholar 

  14. Viswanathan, R., Varshney, P.K.: Distributed detection with multiple sensors - part I: fundamentals. Proc. IEEE 85(1), 54–63 (1997)

    Article  Google Scholar 

  15. Ciuonzo, D., Salvo Rossi, P., Willett, P.: Generalized Rao test for decentralized detection of an uncooperative target. IEEE Signal Process. Lett. 24(5), 678–682 (2017)

    Article  Google Scholar 

  16. Fang, J., Liu, Y., Li, H., Li, S.: One-bit quantizer design for multisensor GLRT fusion. IEEE Signal Process. Lett. 20(3), 257–260 (2013)

    Article  Google Scholar 

  17. Ciuonzo, D., Salvo Rossi, P.: Decision fusion with unknown sensor detection probability. IEEE Signal Process. Lett. 21(2), 208–212 (2014)

    Article  Google Scholar 

  18. Aalo, V.A., Viswanathan, R.: Multilevel quantisation and fusion scheme for the decentralised detection of an unknown signal. IEE Proc. Radar Sonar Navig. 141(1), 37–44 (1994)

    Article  Google Scholar 

  19. Chen, B., Jiang, R., Kasetkasem, T., Varshney, P.K.: Channel aware decision fusion in wireless sensor networks. IEEE Trans. Signal Process. 52(12), 3454–3458 (2004)

    Article  MathSciNet  Google Scholar 

  20. Ciuonzo, D., Romano, G., Salvo Rossi, P.: Channel-aware decision fusion in distributed MIMO wireless sensor networks, decode-and-fuse vs. decode-then-fuse. IEEE Trans. Wireless Commun. 11(8), 2976–2985 (2012)

    Google Scholar 

  21. Niu, R., Varshney, P.K.: Performance analysis of distributed detection in a random sensor field. IEEE Trans. Signal Process. 56(1), 339–349 (2008)

    Article  MathSciNet  Google Scholar 

  22. Chin, J.R., et al.: Identification of low-level point radioactive sources using a sensor network. ACM Trans. Sens. Netw. (TOSN) 7(3), 21 (2010)

    Google Scholar 

  23. Sen, S., et al.: Performance analysis of Wald-statistic based network detection methods for radiation sources. In: 19th International Conference on Information Fusion (FUSION), pp. 820–827 (2016)

    Google Scholar 

  24. Sundaresan, A., Varshney, P.K., Rao, N.S.V.: Distributed detection of a nuclear radioactive source using fusion of correlated decisions. In: 10th IEEE International Conference on Information Fusion (FUSION), pp. 1–7 (2007)

    Google Scholar 

  25. Sundaresan, A., Varshney, P.K., Rao, N.S.V.: Copula-based fusion of correlated decisions. IEEE Trans. Aerosp. Electron. Syst. 47(1), 454–471 (2011)

    Article  Google Scholar 

  26. Sundaresan, A., Varshney, P.K., Rao, N.S.V.: Distributed detection of a nuclear radioactive source based on a hierarchical source model. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2901–2904 (2009)

    Google Scholar 

  27. Kay, S.M.: Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory. Prentice Hall PTR, Upper Saddle River (1998)

    Google Scholar 

  28. Niu, R., Varshney, P.K.: Joint detection and localization in sensor networks based on local decisions. In: 40th Asilomar Conference on Signals, Systems and Computers, pp. 525–529 (2006)

    Google Scholar 

  29. Shoari, A., Seyedi, A.: Detection of a non-cooperative transmitter in Rayleigh fading with binary observations. In: IEEE Military Communications Conference (MILCOM), pp. 1–5 (2012)

    Google Scholar 

  30. Kailkhura, B., Ray, P., Rajan, D., Yen, A., Barnes, P., Goldhahn, R.: Byzantine-resilient locally optimum detection using collaborative autonomous networks. In: IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP) (2018)

    Google Scholar 

  31. Ciuonzo, D., Salvo Rossi, P.: Distributed detection of a non-cooperative target via generalized locally-optimum approaches. Inf. Fusion 36, 261–274 (2017)

    Article  Google Scholar 

  32. Davies, R.D.: Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74(1), 33–43 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Ciuonzo, D., Papa, G., Romano, G., Salvo Rossi, P., Willett, P.: One-bit decentralized detection with a Rao test for multisensor fusion. IEEE Signal Process. Lett. 20(9), 861–864 (2013)

    Article  Google Scholar 

  34. Ciuonzo, D., Salvo Rossi, P.: Quantizer design for generalized locally optimum detectors in wireless sensor networks. IEEE Wirel. Commun. Lett. 7(2), 162–165 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ciuonzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bovenzi, G., Ciuonzo, D., Persico, V., Pescapè, A., Rossi, P.S. (2019). IoT-Enabled Distributed Detection of a Nuclear Radioactive Source via Generalized Score Tests. In: Thampi, S., Marques, O., Krishnan, S., Li, KC., Ciuonzo, D., Kolekar, M. (eds) Advances in Signal Processing and Intelligent Recognition Systems. SIRS 2018. Communications in Computer and Information Science, vol 968. Springer, Singapore. https://doi.org/10.1007/978-981-13-5758-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-5758-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-5757-2

  • Online ISBN: 978-981-13-5758-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics