Skip to main content

Theoretical Basis

  • Chapter
  • First Online:
Book cover Engineering Optics 2.0
  • 2189 Accesses

Abstract

This chapter first describes the theories and laws in classic optics, and highlights their drawbacks and challenges in engineering applications. Then the macroscopic and microscopic theories of meta-surface-waves are presented as a cornerstone of EO 2.0. Subsequently, the generalized theories and laws of diffraction, reflection and refraction, absorption, and radiation are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fermat’s Principle and the Laws of Reflection and Refraction, http://scipp.ucsc.edu/~haber/ph5B/fermat09.pdf

  2. M. Born, E. Wolf, Principle of Optics, 7th edn. (Pergamon, Oxford, UK, 2007)

    Google Scholar 

  3. W. Singer, M. Totzek, H. Gross, Physical Image Formation (Wiley, 2005)

    Google Scholar 

  4. Beer-Lambert law, https://en.wikipedia.org/Beer-Lambert_law

  5. M. Vollmer, K.-P. Mollmann, Infrared Thermal Imaging: Fundamentals, Research and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2010)

    Book  Google Scholar 

  6. X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron. 58, 594201 (2015)

    Article  CAS  Google Scholar 

  7. S.A. Maier, Plasmonis: Fundamentals and Applications (Springer, 2007)

    Google Scholar 

  8. X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photon. 10, 757–842 (2018)

    Article  Google Scholar 

  9. M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)

    Article  CAS  Google Scholar 

  10. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    Article  CAS  Google Scholar 

  11. W. Rotman, Plasma simulation by artificial dielectrics and parallel-plate media. IRE Trans. Antennas Propag. 10, 82–95 (1962)

    Article  Google Scholar 

  12. J.B. Pendry, L. Martín-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)

    Article  CAS  Google Scholar 

  13. F.J. Garcia-Vidal, L. Martín-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A Pure Appl. Opt. 7, S97 (2005)

    Article  Google Scholar 

  14. S.A. Maier, S.R. Andrews, L. Martín-Moreno, F.J. García-Vidal, Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805 (2006)

    Article  CAS  Google Scholar 

  15. X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)

    Article  CAS  Google Scholar 

  16. M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)

    Article  CAS  Google Scholar 

  17. X. Luo, I. Teruya, Sub 100 nm lithography based on plasmon polariton resonance, in Digest of Papers (IEEE, 2003), pp. 138–139

    Google Scholar 

  18. L.B. Whitbourn, R.C. Compton, Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary. Appl. Opt. 24, 217–220 (1985)

    Article  CAS  Google Scholar 

  19. Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, X. Luo, Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 1801691 (2019)

    Google Scholar 

  20. J. Ducuing, N. Bloembergen, Observation of reflected light harmonics at the boundary of piezoelectric crystals. Phys. Rev. Lett. 10, 474–476 (1963)

    Article  CAS  Google Scholar 

  21. X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 31, 1804680 (2019)

    Google Scholar 

  22. X. Luo, Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4728 (2018)

    Article  CAS  Google Scholar 

  23. H.P. Stahl, Survey of cost models for space telescopes. Opt. Eng. 49, 053005 (2010)

    Google Scholar 

  24. R.A. Hyde, Eyeglass. 1. Very large aperture diffractive telescopes. Appl. Opt. 38, 4198–4212 (1999)

    Article  CAS  Google Scholar 

  25. P.D. Atcheson, C. Stewart, J. Domber, K. Whiteaker, J. Cole, P. Spuhler, A. Seltzer, J.A. Britten, S.N. Dixit, B. Farmer, L. Smith, MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes, in SPIE Astronomical Telescopes + Instrumentation (SPIE, 2012), p. 14

    Google Scholar 

  26. T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)

    Article  Google Scholar 

  27. X.G. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)

    Article  Google Scholar 

  28. L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2008)

    Article  CAS  Google Scholar 

  29. M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)

    Article  CAS  Google Scholar 

  30. X. Li, M. Pu, Y. Wang, X. Ma, Y. Li, H. Gao, Z. Zhao, P. Gao, C. Wang, X. Luo, Dynamic control of the extraordinary optical scattering in semicontinuous 2d metamaterials. Adv. Opt. Mater. 4, 659–663 (2016)

    Article  CAS  Google Scholar 

  31. X. Li, M. Pu, Z. Zhao, X. Ma, J. Jin, Y. Wang, P. Gao, X. Luo, Catenary nanostructures as compact Bessel beam generators. Sci. Rep. 6, 20524 (2016)

    Article  CAS  Google Scholar 

  32. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  CAS  Google Scholar 

  33. N. Yu, F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014)

    Article  CAS  Google Scholar 

  34. F. Aieta, P. Genevet, N. Yu, M.A. Kats, Z. Gaburro, F. Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett. 12, 1702–1706 (2012)

    Article  CAS  Google Scholar 

  35. M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, X. Luo, Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt. Express 21, 992 (2013)

    Article  Google Scholar 

  36. H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)

    Article  Google Scholar 

  37. M. Khorasaninejad, F. Capasso, Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters. Nano Lett. 15, 6709–6715 (2015)

    Article  CAS  Google Scholar 

  38. S. Larouche, Y.-J. Tsai, T. Tyler, N.M. Jokerst, D.R. Smith, Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012)

    Article  CAS  Google Scholar 

  39. X. Li, X. Ma, X. Luo, Principles and applications of metasurfaces with phase modulation. Opto-Electron. Eng. 44, 255–275 (2017)

    Google Scholar 

  40. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  Google Scholar 

  41. A.G. Fox, An adjustable wave-guide phase changer. Proc. IRE 35, 1489–1498 (1947)

    Article  Google Scholar 

  42. W. Sichak, D.J. Levine, Microwave high-speed continuous phase shifter. Proc. IRE 43, 1661–1663 (1955)

    Article  Google Scholar 

  43. S. Pancharatnam, Generalized theory of interference, and its applications. Proc. Indian Acad. Sci. 44, 247–262 (1956)

    Article  Google Scholar 

  44. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, W. Zhang, Broadband terahertz wave deflection based on c-shape complex metamaterials with phase discontinuities. Adv. Mater. 25, 4567–4572 (2013)

    Article  CAS  Google Scholar 

  45. Kavli Foundation, http://www.kavlifoundation.org

  46. D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984)

    Article  Google Scholar 

  47. E.A. Ash, G. Nicholls, Super-resolution aperture scanning microscope. Nature 237, 510 (1972)

    Article  CAS  Google Scholar 

  48. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  CAS  Google Scholar 

  49. W. Wang, L. Lin, J. Ma, C. Wang, J. Cui, C. Du, X. Luo, Electromagnetic concentrators with reduced material parameters based on coordinate transformation. Opt. Express 16, 11431–11437 (2008)

    Article  Google Scholar 

  50. C. Wang, P. Gao, Z. Zhao, N. Yao, Y. Wang, L. Liu, K. Liu, X. Luo, Deep sub-wavelength imaging lithography by a reflective plasmonic slab. Opt. Express 21, 20683–20691 (2013)

    Article  CAS  Google Scholar 

  51. X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)

    Article  CAS  Google Scholar 

  52. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  CAS  Google Scholar 

  53. P. Gao, N. Yao, C. Wang, Z. Zhao, Y. Luo, Y. Wang, G. Gao, K. Liu, C. Zhao, X. Luo, Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl. Phys. Lett. 106, 093110 (2015)

    Article  CAS  Google Scholar 

  54. X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)

    Article  Google Scholar 

  55. Z. Zhao, Y. Luo, W. Zhang, C. Wang, P. Gao, Y. Wang, M. Pu, N. Yao, C. Zhao, X. Luo, Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci. Rep. 5, 15320 (2015)

    Article  CAS  Google Scholar 

  56. G.T. Di Francia, Super-gain antennas and optical resolving power. Il Nuovo Cimento 9, 426–438 (1952)

    Article  Google Scholar 

  57. E.T.F. Rogers, N.I. Zheludev, Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging. J. Opt. 15, 094008 (2013)

    Article  Google Scholar 

  58. G. Lerosey, J. de Rosny, A. Tourin, M. Fink, Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007)

    Article  CAS  Google Scholar 

  59. C. Wang, D. Tang, Y. Wang, Z. Zhao, J. Wang, M. Pu, Y. Zhang, W. Yan, P. Gao, X. Luo, Super-resolution optical telescopes with local light diffraction shrinkage. Sci. Rep. 5, 18485 (2015)

    Article  CAS  Google Scholar 

  60. M.V. Berry, S. Popescu, Evolution of quantum superoscillations and optical superresolution without evanescent waves. J. Phys. A Math. Gen. 39, 6965 (2006)

    Article  Google Scholar 

  61. F.M. Huang, N.I. Zheludev, Super-resolution without evanescent waves. Nano Lett. 9, 1249–1254 (2009)

    Article  CAS  Google Scholar 

  62. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London 18, 269 (1902)

    Article  Google Scholar 

  63. A. Ciattoni, B. Crosignani, P. Di Porto, Vectorial free-space optical propagation: a simple approach for generating all-order nonparaxial corrections. Opt. Commun. 177, 9–13 (2000)

    Article  CAS  Google Scholar 

  64. M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361–4278 (2017)

    Article  CAS  Google Scholar 

  65. W. Woltersdorff, Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Zeitschrift für Physik A Hadrons and Nuclei 91, 230–252 (1934)

    CAS  Google Scholar 

  66. E.F. Knott, J.F. Shaeffer, M.T. Tuley, Radar Cross Section, 2nd edn. (SciTech Publishing, USA, 2004)

    Google Scholar 

  67. W.W. Salisbury, Absorbent Body for Electromagnetic Waves (1952)

    Google Scholar 

  68. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  CAS  Google Scholar 

  69. C. Hu, Z. Zhao, X. Chen, X. Luo, Realizing near-perfect absorption at visible frequencies. Opt. Express 17, 11039–11044 (2009)

    Article  CAS  Google Scholar 

  70. M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, X. Luo, Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt. Express 20, 25513–25519 (2012)

    Article  CAS  Google Scholar 

  71. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)

    Article  CAS  Google Scholar 

  72. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)

    Article  CAS  Google Scholar 

  73. W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)

    Article  CAS  Google Scholar 

  74. M. Pu, Q. Feng, C. Hu, X. Luo, Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733–738 (2012)

    Article  CAS  Google Scholar 

  75. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015)

    Article  CAS  Google Scholar 

  76. S. Li, Q. Duan, S. Li, Q. Yin, W. Lu, L. Li, B. Gu, B. Hou, W. Wen, Perfect electromagnetic absorption at one-atom-thick scale. Appl. Phys. Lett. 107, 181112 (2015)

    Article  CAS  Google Scholar 

  77. C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)

    Article  CAS  Google Scholar 

  78. M. Hong, Metasurface wave in planar nano-photonics. Sci. Bull. 61, 112–113 (2016)

    Article  Google Scholar 

  79. K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)

    Article  Google Scholar 

  80. D. Wang, Q. Huang, C. Qiu, M. Hong, Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation. Sci. China Phys. Mech. Astron. 58, 08420 (2015)

    Google Scholar 

  81. X. Luo, M. Pu, X. Ma, X. Li, Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antenn. Propag. 2015, 204127 (2015)

    Google Scholar 

  82. Y. Guo, C.L. Cortes, S. Molesky, Z. Jacob, Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012)

    Article  CAS  Google Scholar 

  83. I.M. Stanislav, R.S. Constantin, A.T. Sergei, Overcoming black body radiation limit in free space: metamaterial superemitter. New J. Phys. 18, 013034 (2016)

    Article  CAS  Google Scholar 

  84. L. Hu, A. Narayanaswamy, X. Chen, G. Chen, Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 92, 133106 (2008)

    Article  CAS  Google Scholar 

  85. J.B. Pendry, Radiative exchange of heat between nanostructures. J. Phys. Condens. Matter 11, 6621 (1999)

    Google Scholar 

  86. H. Yijia, P. Mingbo, G. Ping, Z. Zeyu, L. Xiong, M. Xiaoliang, L. Xiangang, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)

    Article  Google Scholar 

  87. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540 (2014)

    Article  CAS  Google Scholar 

  88. L. Zhu, A.P. Raman, S. Fan, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. PNAS 112, 12282–12287 (2015)

    Article  CAS  Google Scholar 

  89. Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Sci. 339, 1045–1047 (2017)

    Google Scholar 

  90. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. Appl. 69, 681 (1946)

    Google Scholar 

  91. M. Pelton, Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9, 427 (2015)

    Article  CAS  Google Scholar 

  92. N.I. Zheludev, What diffraction limit? Nat. Mater. 7, 420–422 (2008)

    Article  CAS  Google Scholar 

  93. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, Coherent emission of light by thermal sources. Nature 416, 61 (2002)

    Article  CAS  Google Scholar 

  94. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)

    Article  CAS  Google Scholar 

  95. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T.W. Ebbesen, J. Wenger, Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett. 11, 637–644 (2011)

    Article  CAS  Google Scholar 

  96. H. Caglayan, I. Bulu, E. Ozbay, Beaming of electromagnetic waves emitted through a subwavelength annular aperture. J. Opt. Soc. Am. B 23, 419–422 (2006)

    Article  CAS  Google Scholar 

  97. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009)

    Article  CAS  Google Scholar 

  98. N.I. Zheludev, S.L. Prosvirnin, N. Papasimakis, V.A. Fedotov, Lasing spaser. Nat. Photon. 2, 351–354 (2008)

    Article  CAS  Google Scholar 

  99. E. Plum, V.A. Fedotov, P. Kuo, D.P. Tsai, N.I. Zheludev, Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Opt. Express 17, 8548–8551 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangang Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, X. (2019). Theoretical Basis. In: Engineering Optics 2.0. Springer, Singapore. https://doi.org/10.1007/978-981-13-5755-8_2

Download citation

Publish with us

Policies and ethics