Perfect Absorption of Light

  • Xiangang LuoEmail author


The absorption of light refers to the conversion of photons and electromagnetic waves to other kinds of energy such as heat and photo-generated carriers. In classic optics, absorbers are characterized by how black they are; thus, an ideal absorber should be black as much as possible. In EO 2.0, the elaborately designed subwavelength structures not only provide a mean to realize ultra-black absorbers, but also enable the precise control of absorption spectrum in the entire electromagnetic spectrum ranging from microwave to ultraviolet band. In this chapter, we give a discussion of various narrow and broadband optical absorbers with special attentions paid on wide-angle, transparent, and refractory absorbers, which show great advantages over their traditional counterparts. Their applications in bolometers, solar cells, and sensors are presented.


Metamaterial absorber Broadband absorber Wide-angle absorber Transparent absorber Refractory absorber 


  1. 1.
  2. 2.
    K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 106, 6044–6047 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914)Google Scholar
  4. 4.
    R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. R. Soc. Lond. 18, 269 (1902)Google Scholar
  5. 5.
    R.H. Ritchie, E.T. Arakawa, J.J. Cowan, R.N. Hamm, Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968)CrossRefGoogle Scholar
  6. 6.
    W.W. Salisbury, Absorbent body for electromagnetic waves, U.S. Patent 2599944, 1952Google Scholar
  7. 7.
    E.F. Knott, J.F. Shaeffer, M.T. Tuley, Radar Cross Section, 2nd edn. (SciTech Publishing, 2004)Google Scholar
  8. 8.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)CrossRefGoogle Scholar
  9. 9.
    C. Hu, X. Li, Q. Feng, X. Chen, X. Luo, Introducing dipole-like resonance into magnetic resonance to realize simultaneous drop in transmission and reflection at terahertz frequency. J. Appl. Phys. 108 (2010)Google Scholar
  10. 10.
    C. Hu, X. Li, Q. Feng, X. Chen, X. Luo, Investigation on the role of the dielectric loss in metamaterial absorber. Opt. Express 18, 6598–6603 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Guo, L. Yan, W. Pan, B. Luo, X. Luo, Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs. Plasmonics 9, 951–957 (2014)CrossRefGoogle Scholar
  12. 12.
    Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Huang, M. Pu, P. Gao, Z. Zhao, X. Li, X. Ma, X. Luo, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, X. Luo, A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale 10, 8298–8303 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Pu, Q. Feng, C. Hu, X. Luo, Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film. Plasmonics 7, 733–738 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, An equivalent realization of coherent perfect absorption under single beam illumination. Sci. Rep. 4, 7369 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z.H. Hang, Y. Lai, B. Hou, M. Shen, C. Wang, Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301(R) (2015)CrossRefGoogle Scholar
  19. 19.
    C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Wang, C. Hu, M. Pu, C. Huang, X. Ma, X. Luo, Electrical tunable L-band absorbing material for two polarisations. Electron. Lett. 48, 1002–1003 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Wu, C. Hu, Y. Wang, M. Pu, C. Huang, C. Wang, X. Luo, Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency. AIP Adv. 3, 022114 (2013)CrossRefGoogle Scholar
  22. 22.
    N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79 (2009)Google Scholar
  23. 23.
    H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16, 7181–7188 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, Design principles for infrared wide-angle perfect absorber based on plasmonic structure. Opt. Express 19, 17413–17420 (2011)CrossRefGoogle Scholar
  25. 25.
    C. Hu, Z. Zhao, X. Chen, X. Luo, Realizing near-perfect absorption at visible frequencies. Opt. Express 17, 11039–11044 (2009)CrossRefGoogle Scholar
  26. 26.
    M. Pu, X. Ma, X. Li, Y. Guo, X. Luo, Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J. Mater. Chem. C 5, 4361–4378 (2017)CrossRefGoogle Scholar
  27. 27.
    T.V. Teperik, F.J. García de Abajo, A.G. Borisov, M. Abdelsalam, P.N. Bartlett, Y. Sugawara, J.J. Baumberg, Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2, 299–301 (2008)CrossRefGoogle Scholar
  28. 28.
    C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. Opt. Express 17, 16745–16749 (2009)CrossRefGoogle Scholar
  29. 29.
    Y.Q. Ye, Y. Jin, S. He, Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J. Opt. Soc. Am. B 27, 498–504 (2010)CrossRefGoogle Scholar
  30. 30.
    X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19, 9401–9407 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Grant, Y. Ma, S. Saha, A. Khalid, D.R.S. Cumming, Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 3476–3478 (2011)CrossRefGoogle Scholar
  32. 32.
    L. Huang, D.R. Chowdhury, S. Ramani, M.T. Reiten, S.-N. Luo, A.J. Taylor, H.-T. Chen, Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 37, 154–156 (2012)CrossRefGoogle Scholar
  33. 33.
    Y. Cui, J. Xu, K.H. Fung, Y. Jin, A. Kumar, S. He, N.X. Fang, A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett. 99, 253101 (2011)CrossRefGoogle Scholar
  34. 34.
    F. Ding, Y. Cui, X. Ge, Y. Jin, S. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 3506 (2012)Google Scholar
  35. 35.
    Y. Cui, K.H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N.X. Fang, Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012)CrossRefGoogle Scholar
  36. 36.
    J. Sun, L. Liu, G. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Wang, C. Huang, C. Hu, X. Luo, Strong enhancement of light absorption and highly directive thermal emission in graphene. Opt. Express 21, 11618–11627 (2013)CrossRefGoogle Scholar
  38. 38.
    Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)CrossRefGoogle Scholar
  39. 39.
    M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)CrossRefGoogle Scholar
  40. 40.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  41. 41.
    M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. 5, 1800835 (2018)CrossRefGoogle Scholar
  42. 42.
    Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, X. Luo, Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 1801691 (2019)Google Scholar
  43. 43.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)Google Scholar
  44. 44.
    D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013)CrossRefGoogle Scholar
  45. 45.
    M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, X. Luo, Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt. Express 20, 25513–25519 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma, High-performance terahertz wave absorbers made of silicon-based metamaterials. Appl. Phys. Lett. 107, 073903 (2015)CrossRefGoogle Scholar
  47. 47.
    X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, S. Zhuang, Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Sci. Rep. 5, 8091 (2015)CrossRefGoogle Scholar
  48. 48.
    J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, X. Luo, An ultra-broadband THz absorber based on structured doped silicon with antireflection techniques. IEEE Photonics J. 1–1 (2018)Google Scholar
  49. 49.
    J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Mayer, Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8, 1517–1524 (2014)CrossRefGoogle Scholar
  50. 50.
    W. Wan, Y. Chong, L. Ge, H. Noh, A.D. Stone, H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)CrossRefGoogle Scholar
  51. 51.
    K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)CrossRefGoogle Scholar
  52. 52.
    Y. Wang, X. Ma, X. Li, M. Pu, X. Luo, Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv. 1, 180013 (2018)Google Scholar
  53. 53.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, 2007)Google Scholar
  54. 54.
    W. Woltersdorff, Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Z. Für Phys. Hadrons Nucl. 91, 230–252 (1934)CrossRefGoogle Scholar
  55. 55.
    Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)CrossRefGoogle Scholar
  56. 56.
    M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, X. Luo, Truncated spherical voids for nearly omnidirectional optical absorption. Opt. Express 19, 20642–20649 (2011)CrossRefGoogle Scholar
  57. 57.
    T. Jang, H. Youn, Y.J. Shin, L.J. Guo, Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics 1, 279–284 (2014)CrossRefGoogle Scholar
  58. 58.
    W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)CrossRefGoogle Scholar
  59. 59.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193 (2010)CrossRefGoogle Scholar
  60. 60.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)CrossRefGoogle Scholar
  61. 61.
    M.-G. Kang, T. Xu, H.J. Park, X. Luo, L.J. Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 4378 (2010)CrossRefGoogle Scholar
  62. 62.
    H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014)CrossRefGoogle Scholar
  63. 63.
    Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. 107, 17491–17496 (2010)CrossRefGoogle Scholar
  64. 64.
    P. Wang, R. Menon, Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states. Opt. Express 22, A99–A110 (2014)CrossRefGoogle Scholar
  65. 65.
    T. Lai, Q. Hou, H. Yang, X. Luo, M. Xi, Clinical application of a novel sliver nanoparticles biosensor based on localized surface plasmon resonance for detecting the microalbuminuria. Acta Biochim. Biophys. Sin. 42, 787–792 (2010)CrossRefGoogle Scholar
  66. 66.
    N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010)CrossRefGoogle Scholar
  67. 67.
    M. Pu, C. Hu, C. Huang, C. Wang, Z. Zhao, Y. Wang, X. Luo, Investigation of Fano resonance in planar metamaterial with perturbed periodicity. Opt. Express 21, 992–1001 (2013)CrossRefGoogle Scholar
  68. 68.
    J. Fang, M. Zhang, F. Zhang, H. Yu, Plasmonic sensor based on Fano resonance. Opto-Electron. Eng. 44, 221–225 (2017)Google Scholar
  69. 69.
    A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D.N. Neshev, Y.S. Kivshar, H. Altug, Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105 (2018)CrossRefGoogle Scholar
  70. 70.
    M. Pu, M. Song, H. Yu, C. Hu, M. Wang, X. Wu, J. Luo, Z. Zhang, X. Luo, Fano resonance induced by mode coupling in all-dielectric nanorod array. Appl. Phys. Express 7, 032002 (2014)CrossRefGoogle Scholar
  71. 71.
    M. Song, H. Yu, C. Wang, N. Yao, M. Pu, J. Luo, Z. Zhang, X. Luo, Sharp Fano resonance induced by a single layer of nanorods with perturbed periodicity. Opt. Express 23, 2895–2903 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations