Polarization Manipulation, Detection, and Imaging

  • Xiangang LuoEmail author


Among all the properties of electromagnetic wave, polarization plays an important role. Polarization sensitivity has been utilized to substantially enhance the functionality of optical technologies, such as in polarization spectroscopy, microscopy, and imaging systems. Manipulation and detection of polarized light wave have been a hot topic for quite a long time but limited by the following two reasons. On the one hand, the anisotropy and dichroism in naturally occurring material are quite weak. On the other hand, different from the intensities and frequencies that are easy to assess using suitable detectors and spectrometers, the polarization state is difficult to probe experimentally since the inherent vectorial information is completely lost in the conventional detection process. As a consequence, the optical systems involving polarization applications have generally been of complexity and bulky size. Miniaturization of these devices and systems is highly desirable for the development of polarization-sensitive systems. The recent development of metamaterials and metasurfaces provides new opportunities to achieve polarization manipulation, measurement, and imaging with ultra-thin artificial structures. In this chapter, we shall give a detailed discussion about the polarization manipulation, detection, and imaging in EO 2.0.


Polarization conversion Form birefringence Anisotropic Chiral Polarization imaging 


  1. 1.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, 2007)Google Scholar
  2. 2.
    G. Elert, The physics hypertextbook (1998–2019)Google Scholar
  3. 3.
    J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade, Z. Yang, M. Wegener, A helical metamaterial for broadband circular polarization conversion. Adv. Opt. Mater. 3, 1411–1417 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Ma, M. Pu, X. Li, Y. Guo, X. Luo, All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron. Adv. 2, 180023 (2019)Google Scholar
  6. 6.
    G. Ohman, The pseudo-Brewster angle. IEEE Trans. Antennas Propag. 25, 903–904 (1977)CrossRefGoogle Scholar
  7. 7.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  8. 8.
    D. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. Lavrinenko, Metamaterial polarization converter analysis: limits of performance. Appl. Phys. B 1–10 (2013)Google Scholar
  9. 9.
    G. Nordin, P. Deguzman, Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. Opt. Express 5, 163–168 (1999)CrossRefGoogle Scholar
  10. 10.
    K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616 (1996)CrossRefGoogle Scholar
  11. 11.
    X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Zhao, M.A. Belkin, A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo, Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Guo, J. Yan, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Ultra-wideband manipulation of electromagnetic waves by bilayer scattering engineered gradient metasurface. RSC Adv. 8, 13061–13066 (2018)CrossRefGoogle Scholar
  16. 16.
    D.C. Flanders, Submicrometer periodicity gratings as artificial anisotropic dielectrics. Appl. Phys. Lett. 42, 492–494 (1983)CrossRefGoogle Scholar
  17. 17.
    L. Young, L.A. Robinson, C. Hacking, Meander-line polarizer. IEEE Trans. Antennas Propag. 21, 376–378 (1973)CrossRefGoogle Scholar
  18. 18.
    R.-S. Chu, K.-M. Lee, Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence. IEEE Trans. Antennas Propag. 35, 652–661 (1987)CrossRefGoogle Scholar
  19. 19.
    X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, X. Luo, Single-layer circular polarizer using metamaterial and its application in antenna. Microw. Opt. Technol. Lett. 54, 1770–1774 (2012)CrossRefGoogle Scholar
  20. 20.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.-T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013)CrossRefGoogle Scholar
  21. 21.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)CrossRefGoogle Scholar
  22. 22.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Yu, F. Aieta, P. Genevet, M.A. Kats, Z. Gaburro, F. Capasso, A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 12, 6328–6333 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Shaltout, J. Liu, V.M. Shalaev, A.V. Kildishev, Optically active metasurface with non-chiral plasmonic nanoantennas. Nano Lett. 14, 4426–4431 (2014)CrossRefGoogle Scholar
  25. 25.
    B. Shen, P. Wang, R. Polson, R. Menon, Ultra-high-efficiency metamaterial polarizer. Optica 1, 356–360 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Hao, Y. Yuan, L. Ran, T. Jiang, J.A. Kong, C.T. Chan, L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007)CrossRefGoogle Scholar
  27. 27.
    Y. Guo, M. Pu, X. Ma, X. Li, X. Luo, Advances of dispersion-engineered metamaterials. Opto-Electron. Eng. 44, 3–22 (2017)Google Scholar
  28. 28.
    Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)CrossRefGoogle Scholar
  29. 29.
    C.A. Dirdal, J. Skaar, Superpositions of Lorentzians as the class of causal functions. Phys. Rev. A 88, 033834 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)CrossRefGoogle Scholar
  31. 31.
    Z. Zhang, J. Luo, M. Song, H. Yu, Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography. Appl. Phys. Lett. 107, 241904 (2015)CrossRefGoogle Scholar
  32. 32.
    Y. Guo, M. Pu, X. Li, X. Ma, P. Gao, Y. Wang, X. Luo, Functional metasurfaces based on metallic and dielectric subwavelength slits and stripes array. J. Phys. Condens. Matter 30, 14003 (2018)Google Scholar
  33. 33.
    Y. Guo, L. Yan, W. Pan, B. Luo, Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface. Opt. Express 23, 27566–27575 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Chen, Ultra-broadband terahertz polarization transformers using dispersion-engineered anisotropic metamaterials. Opto-Electron. Eng. 44, 82–86 (2017)Google Scholar
  35. 35.
    M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, X. Luo, Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Yan, M. Pu, J. Luo, Y. Huang, X. Li, X. Ma, X. Luo, Coherent perfect absorption of electromagnetic wave in subwavelength structures. Opt. Laser Technol. 101, 499–506 (2018)Google Scholar
  37. 37.
    Y. Wang, X. Ma, X. Li, M. Pu, X. Luo, Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv. 1, 180013 (2018)Google Scholar
  38. 38.
    Y. Wang, M. Pu, C. Hu, Z. Zhao, C. Wang, X. Luo, Dynamic manipulation of polarization states using anisotropic meta-surface. Opt. Commun. 319, 14–16 (2014)CrossRefGoogle Scholar
  39. 39.
    S.-C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, M. Wang, Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X 4, 021026 (2014)Google Scholar
  40. 40.
    M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, X. Luo, Plasmonic metasurfaces for switchable photonic spin-orbit interaction based on phase change materials. Adv. Sci. 5, 1800835 (2018)Google Scholar
  41. 41.
    A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)Google Scholar
  42. 42.
    X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, X. Luo, An active metamaterial for polarization manipulating. Adv. Opt. Mater. 2, 945–949 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Cui, C. Huang, W. Pan, M. Pu, Y. Guo, X. Luo, Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror. Sci. Rep. 6, 30771 (2016)CrossRefGoogle Scholar
  44. 44.
    D. Wang, L. Zhang, Y. Gu, M.Q. Mehmood, Y. Gong, A. Srivastava, L. Jian, T. Venkatesan, C.-W. Qiu, M. Hong, Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface. Sci. Rep. 5, 15020 (2015)CrossRefGoogle Scholar
  45. 45.
    D. Wang, L. Zhang, Y. Gong, L. Jian, T. Venkatesan, C. Qiu, M. Hong, Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces. IEEE Photonics J. 8, 1–8 (2016)Google Scholar
  46. 46.
    X. Luo, M. Pu, X. Ma, X. Li, Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antennas Propag. 2015, 204127 (2015)Google Scholar
  47. 47.
    X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, X. Luo, Multi-band circular polarizer using planar spiral metamaterial structure. Opt. Express 20, 16050–16058 (2012)CrossRefGoogle Scholar
  48. 48.
    X. Ma, C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, X. Luo, Dual-band asymmetry chiral metamaterial based on planar spiral structure. Appl. Phys. Lett. 101, 161901 (2012)CrossRefGoogle Scholar
  49. 49.
    Y. Cui, L. Kang, S. Lan, S. Rodrigues, W. Cai, Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 14, 1021–1025 (2014)CrossRefGoogle Scholar
  50. 50.
    C. Huang, X. Ma, M. Pu, G. Yi, Y. Wang, X. Luo, Dual-band 90° polarization rotator using twisted split ring resonators array. Opt. Commun. 291, 345–348 (2013)CrossRefGoogle Scholar
  51. 51.
    X. Ma, C. Huang, M. Pu, W. Pan, Y. Wang, X. Luo, Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial. Appl. Phys. Express 6, 022001 (2013)CrossRefGoogle Scholar
  52. 52.
    Z. Li, M.-H. Kim, C. Wang, Z. Han, S. Shrestha, A.C. Overvig, M. Lu, A. Stein, A.M. Agarwal, M. Lončar, N. Yu, Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol. 12, 675–683 (2017)CrossRefGoogle Scholar
  53. 53.
    C. Wang, Z. Li, M.-H. Kim, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, M. Lončar, Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun. 8, 2098 (2017)CrossRefGoogle Scholar
  54. 54.
    Y. Guo, M. Pu, X. Li, X. Ma, S. Song, Z. Zhao, X. Luo, Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction. IEEE J. Sel. Top. Quantum Electron. 24, 4700107 (2018)CrossRefGoogle Scholar
  55. 55.
    B. Shen, P. Wang, R. Polson, R. Menon, An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 9, 378–382 (2015)CrossRefGoogle Scholar
  56. 56.
    T.P.H. Sidiropoulos, M.P. Nielsen, T.R. Roschuk, A.V. Zayats, S.A. Maier, R.F. Oulton, Compact optical antenna coupler for silicon photonics characterized by third-harmonic generation. ACS Photonics 1, 912–916 (2014)CrossRefGoogle Scholar
  57. 57.
    Y. Guo, M. Pu, X. Li, X. Ma, X. Luo, Ultra-broadband spin-controlled directional router based on single optical catenary integrated on silicon waveguide. Appl. Phys. Express 11, 092202 (2018)CrossRefGoogle Scholar
  58. 58.
    J. Jin, X. Li, Y. Guo, M. Pu, P. Gao, X. Ma, X. Luo, Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures. Nanoscale (2019)Google Scholar
  59. 59.
    A. Espinosa-Soria, F.J. Rodríguez-Fortuño, A. Griol, A. Martínez, On-chip optimal stokes nanopolarimetry based on spin-orbit interaction of light. Nano Lett. 17, 3139–3144 (2017)CrossRefGoogle Scholar
  60. 60.
    F. Ding, A. Pors, Y. Chen, V.A. Zenin, S.I. Bozhevolnyi, Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics 4, 943–949 (2017)CrossRefGoogle Scholar
  61. 61.
    E. Arbabi, S.M. Kamali, A. Arbabi, A. Faraon, Full stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018)CrossRefGoogle Scholar
  62. 62.
    Z. Yang, Z. Wang, Y. Wang, X. Feng, M. Zhao, Z. Wan, L. Zhu, J. Liu, Y. Huang, J. Xia, M. Wegener, Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling. Nat. Commun. 9, 4607 (2018)CrossRefGoogle Scholar
  63. 63.
    M. Khorasaninejad, W.T. Chen, A.Y. Zhu, J. Oh, R.C. Devlin, D. Rousso, F. Capasso, Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595–4600 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations