Introduction to Engineering Optics 2.0

  • Xiangang LuoEmail author


In recent years, modern engineering optics has entered a new phase termed Engineering Optics 2.0 (EO 2.0) and broken the fundamental limitations of classic optical laws with respect to many aspects of optics. This change is enabled by the rapid development of micro-/nanofabrication and characterization techniques, as well as the advancement of electronic computers and numerical simulation algorithms. In this chapter, we give a detailed introduction of the background and progress of this new area.


Engineering optics Nanofabrication Flat optics Diffraction limit 


  1. 1.
    K. Iizuka, Engineering Optics, 3rd ed. (Springer, 2008)Google Scholar
  2. 2.
    X. Luo, Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photonics 5, 4724–4738 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Luo, Subwavelength artificial structures: opening a new era for engineering optics. Adv. Mater. 25, 1804680 (2019)Google Scholar
  4. 4.
    A. Nedelcu, V. Guériaux, A. Berurier, N. Brière de l’Isle, O. Huet, Multispectral and polarimetric imaging in the LWIR: Intersubband detectors as a versatile solution. Infrared Phys. Technol. 59, 125–132 (2013)Google Scholar
  5. 5.
    X. Luo, Subwavelength optical engineering with metasurface waves. Adv. Opt. Mater. 6, 1701201 (2018)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    D.B. Swinson, Chinese “magic” mirrors. Phys. Teach. 30, 295–299 (1992)CrossRefGoogle Scholar
  16. 16.
    R.K. Temple, The Genius of China: 3,000 Years of Science, Discovery, and Invention (Inner Traditions Rochester, VT, 2007)Google Scholar
  17. 17.
    E.S. Barr, Men and milestones in optics II. Thomas Young. Appl. Opt. 2, 639–647 (1963)CrossRefGoogle Scholar
  18. 18.
    R.P. Crease, The most beautiful experiment. Phys. World 15, 19 (2002)Google Scholar
  19. 19.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University Press, 1999)Google Scholar
  20. 20.
    M. Pu, C. Wang, Y. Wang, X. Luo, Subwavelength electromagnetics below the diffraction limit. Acta Phys. Sin. 66, 144101 (2017)Google Scholar
  21. 21.
    F. Qin, M. Hong, Breaking the diffraction limit in far field by planar metalens. Sci. China Phys. Mech. Astron. 60, 044231 (2017)CrossRefGoogle Scholar
  22. 22.
    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Basic Books, 1963)Google Scholar
  23. 23.
    H. Gross, Fundamentals of Technical Optics (Wiley, 2005)Google Scholar
  24. 24.
    M. Freebody, Great strides in optical fabrication. Photonics Spectra 10, 42–47 (2016)Google Scholar
  25. 25.
    R. Williamson, Field Guide to Optical Fabrication (SPIE, 2011)Google Scholar
  26. 26.
    F.Z. Fang, X.D. Zhang, A. Weckenmann, G.X. Zhang, C. Evans, Manufacturing and measurement of freeform optics. CIRP Ann. 62, 823–846 (2013)CrossRefGoogle Scholar
  27. 27.
    L. Rayleigh, XXXI. Investigations in optics, with special reference to the Spectroscope. Philos. Mag. Ser. 5(8), 261–274 (1879)CrossRefGoogle Scholar
  28. 28.
    L.W. Chen, Y. Zhou, M.X. Wu, M.H. Hong, Remote-mode microsphere nano-imaging: new boundaries for optical microscopes. Opto-Electron. Adv. 1, 170001 (2018)Google Scholar
  29. 29.
    R. Gilmozzi, Giant telescopes of the future. Sci. Am. 5, 66–71 (2006)Google Scholar
  30. 30.
    H.P. Stahl, Survey of cost models for space telescopes. Opt. Eng. 49, 053005 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Totzeck, W. Ulrich, A. Gohnermeier, W. Kaiser, Semiconductor fabrication: pushing deep ultraviolet lithography to its limits. Nat. Photonics 1, 629–631 (2007)CrossRefGoogle Scholar
  32. 32.
    M. Planck, The Theory of Heat Radiation (P. Blakiston’s Son & Co., 1914)Google Scholar
  33. 33.
    K.N. Rozanov, Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 48, 1230–1234 (2000)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, X. Ma, X. Li, M. Pu, X. Luo, Perfect electromagnetic and sound absorption via subwavelength holes array. Opto-Electron. Adv. 1, 180013 (2018)Google Scholar
  35. 35.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation. Appl. Phys. Lett. 102, 131906 (2013)CrossRefGoogle Scholar
  37. 37.
    X. Ma, M. Pu, X. Li, Y. Guo, X. Luo, All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron. Adv. 2, 180023 (2019)Google Scholar
  38. 38.
    Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-F. Lin, M.-J. Lin, S.-H. Wang, J.-R. Lai, Biologically inspired achromatic waveplates for visible light. Nat. Commun. 2, 363 (2011)CrossRefGoogle Scholar
  39. 39.
    K. Robbie, M.J. Brett, A. Lakhtakia, Chiral sculptured thin films. Nature 384, 616 (1996)CrossRefGoogle Scholar
  40. 40.
    J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)CrossRefGoogle Scholar
  41. 41.
    X. Luo, M. Pu, X. Ma, X. Li, Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antennas Propag. 2015, 204127 (2015)Google Scholar
  42. 42.
    A.I. Lvovsky, Fresnel equations, in Encyclopedia of Optical Engineering (Taylor & Francis, 2007), pp. 1–6Google Scholar
  43. 43.
    F. Bouchard, H. Mand, M. Mirhosseini, E. Karimi, R.W. Boyd, Achromatic orbital angular momentum generator. New J. Phys. 16, 123006 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Vollmer, K.-P. Mollmann, Infrared thermal imaging: fundamentals, research and applications (Wiley-VCH Verlag GmbH & Co, KGaA, 2010)CrossRefGoogle Scholar
  45. 45.
    M. Song, H. Yu, C. Hu, M. Pu, Z. Zhang, J. Luo, X. Luo, Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Fan, Photovoltaics: an alternative “Sun” for solar cells. Nat. Nanotechnol. 9, 92–93 (2014)CrossRefGoogle Scholar
  47. 47.
    X. Xie, X. Li, M. Pu, X. Ma, K. Liu, Y. Guo, X. Luo, Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Adv. Funct. Mater. 28, 1706673 (2018)CrossRefGoogle Scholar
  48. 48.
    G.P. Williams, Filling the THz gap—high power sources and applications. Rep. Prog. Phys. 69, 301 (2006)CrossRefGoogle Scholar
  49. 49.
    Committee on Nanophotonics Accessibility and Applicability, National Research Council, Nanophotonics: Accessibility and Applicability (National Academies Press, 2008).Google Scholar
  50. 50.
    R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960)Google Scholar
  51. 51.
    X. Luo, Plasmonic metalens for nanofabrication. Natl. Sci. Rev. 5, 137–138 (2018)CrossRefGoogle Scholar
  52. 52.
    V.-C. Su, C.H. Chu, G. Sun, D.P. Tsai, Advances in optical metasurfaces: fabrication and applications [Invited]. Opt. Express 26, 13148–13182 (2018)CrossRefGoogle Scholar
  53. 53.
    A. She, S. Zhang, S. Shian, D.R. Clarke, F. Capasso, Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018)CrossRefGoogle Scholar
  54. 54.
    T. Hu, C.-K. Tseng, Y.H. Fu, Z. Xu, Y. Dong, S. Wang, K.H. Lai, V. Bliznetsov, S. Zhu, Q. Lin, Y. Gu, Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. Opt. Express 26, 19548–19554 (2018)CrossRefGoogle Scholar
  55. 55.
    U.D. Zeitner, M. Oliva, F. Fuchs, D. Michaelis, T. Benkenstein, T. Harzendorf, E.-B. Kley, High performance diffraction gratings made by e-beam lithography. Appl. Phys. A 109, 789–796 (2012)CrossRefGoogle Scholar
  56. 56.
    E.H. Synge, A suggested model for extending microscopic resolution into the ultra-microscopic region. Philos. Mag. 6, 356–362 (1928)CrossRefGoogle Scholar
  57. 57.
    X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008)CrossRefGoogle Scholar
  58. 58.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRefGoogle Scholar
  59. 59.
    X. Luo, T. Ishihara, Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84, 4780–4782 (2004)CrossRefGoogle Scholar
  60. 60.
    X. Luo, T. Ishihara, Subwavelength photolithography based on surface-plasmon polariton resonance. Opt. Express 12, 3055–3065 (2004)CrossRefGoogle Scholar
  61. 61.
    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)CrossRefGoogle Scholar
  62. 62.
    X. Luo, D. Tsai, M. Gu, M. Hong, Subwavelength interference of light on structured surfaces. Adv. Opt. Photonics 10, 757–842 (2018)CrossRefGoogle Scholar
  63. 63.
    M. Pu, Y. Guo, X. Li, X. Ma, X. Luo, Revisitation of extraordinary Young’s interference: from catenary optical fields to spin-orbit interaction in metasurfaces. ACS Photonics 5, 3198–3204 (2018)CrossRefGoogle Scholar
  64. 64.
    M. Rahmani, G. Leo, I. Brener, A. Zayats, S. Maier, C. De Angelis, H. Tan, V. F. Gili, F. Karouta, R. Oulton, Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron. Adv. 1, 180021 (2018)Google Scholar
  65. 65.
    H. Shi, X. Luo, C. Du, Young’s interference of double metallic nanoslit with different widths. Opt. Express 15, 11321–11327 (2007)CrossRefGoogle Scholar
  66. 66.
    T. Xu, C. Du, C. Wang, X. Luo, Subwavelength imaging by metallic slab lens with nanoslits. Appl. Phys. Lett. 91, 201501 (2007)CrossRefGoogle Scholar
  67. 67.
    L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009)CrossRefGoogle Scholar
  68. 68.
    T. Xu, C. Wang, C. Du, X. Luo, Plasmonic beam deflector. Opt. Express 16, 4753–4759 (2008)CrossRefGoogle Scholar
  69. 69.
    J. Yan, Y. Guo, M. Pu, X. Li, X. Ma, X. Luo, High-efficiency multi-wavelength metasurface with complete independent phase control. Chin. Opt. Lett. 16, 050003 (2018)CrossRefGoogle Scholar
  70. 70.
    Y. Guo, J. Yan, M. Pu, X. Li, X. Ma, Z. Zhao, X. Luo, Ultra-wideband manipulation of electromagnetic waves by bilayer scattering engineered gradient metasurface. RSC Adv. 8, 13061–13066 (2018)CrossRefGoogle Scholar
  71. 71.
    T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, X. Luo, Directional excitation of surface plasmons with subwavelength slits. Appl. Phys. Lett. 92, 101501 (2008)CrossRefGoogle Scholar
  72. 72.
    J. Sun, X. Wang, T. Xu, Z.A. Kudyshev, A.N. Cartwright, N.M. Litchinitser, Spinning light on the nanoscale. Nano Lett. 14, 2726–2729 (2014)CrossRefGoogle Scholar
  73. 73.
    L. Lin, X.M. Goh, L.P. McGuinness, A. Roberts, Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. Nano Lett. 10, 1936 (2010)CrossRefGoogle Scholar
  74. 74.
    S. Ishii, V.M. Shalaev, A.V. Kildishev, Holey-metal lenses: sieving single modes with proper phases. Nano Lett. 13, 159–163 (2013)CrossRefGoogle Scholar
  75. 75.
    P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081–1083 (1998)CrossRefGoogle Scholar
  76. 76.
    D.T. Moore, Gradient-index optics-A review. Appl. Opt. 19, 1035–1038 (1980)CrossRefGoogle Scholar
  77. 77.
    J. Evans, M. Rosenquist, “F = ma” optics. Am. J. Phys. 54, 876–883 (1986)CrossRefGoogle Scholar
  78. 78.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)CrossRefGoogle Scholar
  79. 79.
    X. Luo, Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015)CrossRefGoogle Scholar
  80. 80.
    Y. Xu, Y. Fu, H. Chen, Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016)CrossRefGoogle Scholar
  81. 81.
    M. Khorasaninejad, W.T. Chen, R.C. Devlin, J. Oh, A.Y. Zhu, F. Capasso, Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016)CrossRefGoogle Scholar
  82. 82.
    M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, H. Ren, X. Li, F. Qin, J. Yang, M. Gu, M. Hong, X. Luo, Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015)CrossRefGoogle Scholar
  83. 83.
    F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso, Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012)CrossRefGoogle Scholar
  84. 84.
    F. Capasso, The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953 (2018)CrossRefGoogle Scholar
  85. 85.
    P. Lalanne, P. Chavel, Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017)CrossRefGoogle Scholar
  86. 86.
    G. Cao, X. Gan, H. Lin, B. Jia, An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv. 1, 180012 (2018)Google Scholar
  87. 87.
    S. Wang, X. Ouyang, Z. Feng, Y. Cao, M. Gu, X. Li, Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron. Adv. 1, 170002 (2018)Google Scholar
  88. 88.
    D.C. Flanders, Submicrometer periodicity gratings as artificial anisotropic dielectrics. Appl. Phys. Lett. 42, 492–494 (1983)CrossRefGoogle Scholar
  89. 89.
    P. Lalanne, J.-P. Hugonin, High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. J. Opt. Soc. Am. A 15, 1843–1851 (1998)CrossRefGoogle Scholar
  90. 90.
    G. Nordin, P. Deguzman, Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. Opt. Express 5, 163–168 (1999)CrossRefGoogle Scholar
  91. 91.
    Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, X. Luo, Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Sci. Rep. 5, 8434 (2015)CrossRefGoogle Scholar
  92. 92.
    Y. Guo, L. Yan, W. Pan, B. Luo, Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface. Opt. Express 23, 27566–27575 (2015)CrossRefGoogle Scholar
  93. 93.
    M. Pu, Z. Zhao, Y. Wang, X. Li, X. Ma, C. Hu, C. Wang, C. Huang, X. Luo, Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015)CrossRefGoogle Scholar
  94. 94.
    Y. Guo, L. Yan, W. Pan, L. Shao, Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion. Sci. Rep. 6, 30154 (2016)CrossRefGoogle Scholar
  95. 95.
    A.G. Fox, An adjustable wave-guide phase changer. Proc. IRE 35, 1489–1498 (1947)CrossRefGoogle Scholar
  96. 96.
    S. Pancharatnam, Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. 44, 247–262 (1956)CrossRefGoogle Scholar
  97. 97.
    M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 392, 45–57 (1984)CrossRefGoogle Scholar
  98. 98.
    R. Bhandari, Polarization of light and topological phases. Phys. Rep. 281, 1–64 (1997)CrossRefGoogle Scholar
  99. 99.
    M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Methodologies for on-demand dispersion engineering of meta-surface waves. Adv. Opt. Mater. (2019)Google Scholar
  100. 100.
    X. Luo, D. Tsai, M. Gu, M. Hong, Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion (Chem. Soc, Rev, 2019)Google Scholar
  101. 101.
    T. Xu, Y.-K. Wu, X. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 59 (2010)Google Scholar
  102. 102.
    S. Wang, P.C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H.Y. Kuo, B.H. Chen, Y.H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D.P. Tsai, A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018)CrossRefGoogle Scholar
  103. 103.
    Q. Feng, M. Pu, C. Hu, X. Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37, 2133–2135 (2012)CrossRefGoogle Scholar
  104. 104.
    X. Luo, M. Pu, X. Li, X. Ma, Broadband spin Hall effect of light in single nanoapertures. Light Sci. Appl. 6, e16276 (2017)CrossRefGoogle Scholar
  105. 105.
    Y. Huang, M. Pu, P. Gao, Z. Zhao, X. Li, X. Ma, X. Luo, Ultra-broadband large-scale infrared perfect absorber with optical transparency. Appl. Phys. Express 10, 112601 (2017)CrossRefGoogle Scholar
  106. 106.
    H.A. Atwater, The promise of plasmonics. Sci. Am. 296, 56–62 (2007)CrossRefGoogle Scholar
  107. 107.
    D. Lin, P. Fan, E. Hasman, M.L. Brongersma, Dielectric gradient metasurface optical elements. Science 345, 298–302 (2014)CrossRefGoogle Scholar
  108. 108.
    A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015)CrossRefGoogle Scholar
  109. 109.
    A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354, aag2472 (2016)Google Scholar
  110. 110.
    S. Jahani, Z. Jacob, All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016)CrossRefGoogle Scholar
  111. 111.
    Y. Huang, J. Luo, M. Pu, Y. Guo, Z. Zhao, X. Ma, X. Li, X. Luo Catenary electromagnetics for ultrabroadband lightweight absorbers and large-scale flat antennas. Adv. Sci. 1801691 (2019)Google Scholar
  112. 112.
    C.A. Dirdal, J. Skaar, Superpositions of Lorentzians as the class of causal functions. Phys. Rev. A 88, 033834 (2013)CrossRefGoogle Scholar
  113. 113.
    Z. Zhao, M. Pu, Y. Wang, X. Luo, The generalized laws of refraction and reflection. Opto-Electron. Eng. 44, 129–139 (2017)Google Scholar
  114. 114.
    M. Pu, X. Ma, Y. Guo, X. Li, X. Luo, Theory of microscopic meta-surface waves based on catenary optical fields and dispersion. Opt. Express 26, 19555–19562 (2018)CrossRefGoogle Scholar
  115. 115.
    H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W.’t Hooft, D. Lenstra, E.R. Eliel, Plasmon-assisted two-slit transmission: young’s experiment revisited. Phys. Rev. Lett. 94, 053901 (2005)Google Scholar
  116. 116.
    X. Luo, Catenary Optics (Springer Singapore, 2019)Google Scholar
  117. 117.
    Nature Milestones: Photons,
  118. 118.
    A. Levin, R. Fergus, F. Durand, W.T. Freeman, Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26, 70 (2007)CrossRefGoogle Scholar
  119. 119.
    Y. Altmann, S. McLaughlin, M.J. Padgett, V.K. Goyal, A.O. Hero, D. Faccio, Quantum-inspired computational imaging. Science 361, eaat2298 (2018)Google Scholar
  120. 120.
    A. Nemati, Q. Wang, M. Hong, J. Teng, Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 180009 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina

Personalised recommendations