Skip to main content

Innovative Techniques and Alternative Solvents for Green Extraction of Proteins from Pulses and Oleaginous Meals as Industrial Sources for Food and Feed

  • Chapter
  • First Online:

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Considering the global population growth driven by emerging countries and the increase in nutritional needs of populations, the valorization of protein fractions of plant resources, particularly oilseed crops, appears to be a major issue to answer the demand. Oilseeds are indeed rich in both oil and protein. Historically, oil being the main compound valued, the current crushing process is optimized to maximize its extraction and the proteins remain in the cake (valued in animal feed). The conditions applied during the process and, in particular, during the step of desolventization of the cake after the extraction of the oil with hexane, cause degradation of the proteins. The valorization of these proteins uses traditional extraction methods as well as innovative techniques in order to preserve the nutritional and functional quality of proteins. This chapter gives a picture of current knowledge on extraction techniques, procedures, and solvents for proteins from pulses and oleaginous meals. The modern innovative and intensified extraction techniques, alternative solvents, and original procedures (ultrasound, microwaves, bio-based solvents, mechanical extraction, enzyme-assisted extraction, natural deep eutectic solvents, pulsed electric fields) are summarized in terms of their principles, processes, applications, benefits, and disadvantages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gargaud M, Amils R, Quintanilla JC et al (2011) Encyclopedia of astrobiology. Springer-Verlag, Berlin

    Book  Google Scholar 

  2. AFSSA (2007) Apport en protéines : consommation, qualité, besoins et recommandations

    Google Scholar 

  3. Lebovka N, Vorobiev E, Chemat F (2011) Enhancing extraction processes in the food industry. CRC Press

    Google Scholar 

  4. Whitbourne SK (1985) The aging body: physiological changes and psychological consequences. Springer-Verlag, New York

    Book  Google Scholar 

  5. Backx EMP, Tieland M, Borgonjen-van den Berg KJ et al (2016) Protein intake and lean body mass preservation during energy intake restriction in overweight older adults. Int J Obes (Lond) 40:299–304. https://doi.org/10.1038/ijo.2015.182

    Article  CAS  Google Scholar 

  6. Fang N, Yu S, Badger TM (2004) Comprehensive phytochemical profile of soy protein isolate. J Agric Food Chem 52:4012–4020. https://doi.org/10.1021/jf049842y

    Article  CAS  PubMed  Google Scholar 

  7. Laroque D, Inisan C, Berger C et al (2008) Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chem 111:1032–1042. https://doi.org/10.1016/j.foodchem.2008.05.033

    Article  CAS  Google Scholar 

  8. Boye J, Zare F, Pletch A (2010) Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res Int 43:414–431. https://doi.org/10.1016/j.foodres.2009.09.003

    Article  CAS  Google Scholar 

  9. Han X-Z, Hamaker BR (2002) Partial leaching of granule-associated proteins from rice starch during alkaline extraction and subsequent gelatinization. Starch—Stärke 54:454–460. https://doi.org/10.1002/1521-379X(200210)54:10%3c454:AID-STAR454%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  10. Boye JI, Aksay S, Roufik S et al (2010) Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res Int 43:537–546

    Article  CAS  Google Scholar 

  11. Chabanon G, Chevalot I, Framboisier X et al (2007) Hydrolysis of rapeseed protein isolates: kinetics, characterization and functional properties of hydrolysates. Process Biochem 42:1419–1428. https://doi.org/10.1016/j.procbio.2007.07.009

    Article  CAS  Google Scholar 

  12. Domínguez H, Núñez MJ, Lema JM (1994) Enzymatic pretreatment to enhance oil extraction from fruits and oilseeds: a review. Food Chem 49:271–286. https://doi.org/10.1016/0308-8146(94)90172-4

    Article  Google Scholar 

  13. Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzyme Microb Technol 19:402–420. https://doi.org/10.1016/S0141-0229(96)80004-F

    Article  CAS  Google Scholar 

  14. Zhang SB, Wang Z, Xu SY (2007) Downstream processes for aqueous enzymatic extraction of rapeseed oil and protein hydrolysates. J Amer Oil Chem Soc 84:693–700. https://doi.org/10.1007/s11746-007-1080-2

    Article  CAS  Google Scholar 

  15. Martínez-Maqueda D, Hernández-Ledesma B, Amigo L et al (2013) Extraction/fractionation techniques for proteins and peptides and protein digestion. In: Toldrá F, Nollet LML (eds) Proteomics in foods. Springer, US, pp 21–50

    Chapter  Google Scholar 

  16. Meisel H (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers 43:119–128. https://doi.org/10.1002/(SICI)1097-0282(1997)43:2%3c119:AID-BIP4%3e3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  17. Zhang SB, Wang Z, Xu SY (2007) Optimization of the aqueous enzymatic extraction of rapeseed oil and protein hydrolysates. J Am Oil Chem Soc 84:97–105

    Article  Google Scholar 

  18. Jung S (2009) Aqueous extraction of oil and protein from soybean and lupin: a comparative study. J Food Process Preserv 33:547–559. https://doi.org/10.1111/j.1745-4549.2009.00400.x

    Article  CAS  Google Scholar 

  19. Bildstein M, Lohmann M, Hennigs C et al (2008) An enzyme-based extraction process for the purification and enrichment of vegetable proteins to be applied in bakery products. Eur Food Res Technol 228:177

    Article  CAS  Google Scholar 

  20. Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Wiley VCH, Weinheim

    Book  Google Scholar 

  21. Vinatoru M (2001) An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason Sonochem 8:303–313

    Article  CAS  Google Scholar 

  22. Moulton KJ, Wang LC (1982) A pilot-plant study of continuous ultrasonic extraction of soybean protein. J Food Sci 47:1127–1129. https://doi.org/10.1111/j.1365-2621.1982.tb07632.x

    Article  Google Scholar 

  23. Dong X-Y, Guo L-L, Wei F et al (2011) Some characteristics and functional properties of rapeseed protein prepared by ultrasonication, ultrafiltration and isoelectric precipitation. J Sci Food Agric 91:1488–1498. https://doi.org/10.1002/jsfa.4339

    Article  CAS  PubMed  Google Scholar 

  24. Zhu J, Fu Q (2012) Optimization of ultrasound-assisted extraction process of perilla seed meal proteins. Food Sci Biotechnol 21:1701–1706. https://doi.org/10.1007/s10068-012-0226-7

    Article  CAS  Google Scholar 

  25. Petigny L, Özel MZ, Périno S et al (2015) Water as green solvent for extraction of natural products. In: Chemat F, Strube J (eds) Green extraction of natural products. Wiley-VCH Verlag GmbH & Co, KGaA, pp 237–264

    Google Scholar 

  26. Ozel MZ, Gogus F, Lewis AC (2003) Subcritical water extraction of essential oils from Thymbra spicata. Food Chem 82:381–386. https://doi.org/10.1016/S0308-8146(02)00558-7

    Article  CAS  Google Scholar 

  27. Ibañez E, Kubátová A, Señoráns FJ et al (2003) Subcritical water extraction of antioxidant compounds from rosemary plants. J Agric Food Chem 51:375–382. https://doi.org/10.1021/jf025878j

    Article  CAS  PubMed  Google Scholar 

  28. Ju Z, Howard LR (2005) Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J Food Sci 70:S270–S276

    Article  CAS  Google Scholar 

  29. Kumar MSY, Dutta R, Prasad D, Misra K (2011) Subcritical water extraction of antioxidant compounds from Seabuckthorn (Hippophae rhamnoides) leaves for the comparative evaluation of antioxidant activity. Food Chem 127:1309–1316. https://doi.org/10.1016/j.foodchem.2011.01.088

    Article  CAS  PubMed  Google Scholar 

  30. Chemat F (2014) Eco-extraction du végétal - Procédés innovants et solvants alternatifs. Dunod, Paris

    Google Scholar 

  31. Asl AH, Khajenoori M (2013) Subcritical water extraction. Mass transfer—advances in sustainable energy and environment oriented numerical modeling. https://doi.org/10.5772/54993

    Google Scholar 

  32. Smith RM (2006) Superheated water: the ultimate green solvent for separation science. Anal Bioanal Chem 385:419–421. https://doi.org/10.1007/s00216-006-0437-y

    Article  CAS  PubMed  Google Scholar 

  33. Watchararuji K, Goto M, Sasaki M, Shotipruk A (2008) Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour Technol 99:6207–6213. https://doi.org/10.1016/j.biortech.2007.12.021

    Article  CAS  PubMed  Google Scholar 

  34. Wiboonsirikul J, Mori M, Khuwijitjaru P, Adachi S (2013) Properties of extract from Okara by its subcritical water treatment. Int J Food Prop 16:974–982. https://doi.org/10.1080/10942912.2011.573119

    Article  CAS  Google Scholar 

  35. Pińkowska H, Oliveros E (2014) Application of the Doehlert matrix for the determination of the optimal conditions of hydrolysis of soybean protein in subcritical water. Ind Eng Chem Res 53:1320–1326. https://doi.org/10.1021/ie403451b

    Article  CAS  Google Scholar 

  36. Pińkowska H, Wolak P, Oliveros E (2014) Hydrothermolysis of rapeseed cake in subcritical water. Effect of reaction temperature and holding time on product composition. Biomass Bioenerg 64:50–61

    Article  Google Scholar 

  37. Ganzler K, Salgó A, Valkó K (1986) Microwave extraction. A novel sample preparation method for chromatography. J Chromatogr 371:299–306

    Article  CAS  Google Scholar 

  38. Craveiro AA, Matos FJA, Alencar JW, Plumel MM (1989) Microwave oven extraction of an essential oil. Flavour Fragr J 4:43–44. https://doi.org/10.1002/ffj.2730040110

    Article  CAS  Google Scholar 

  39. Vian MA, Fernandez X, Visinoni F, Chemat F (2008) Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. J Chromatogr A 1190:14–17. https://doi.org/10.1016/j.chroma.2008.02.086

    Article  CAS  PubMed  Google Scholar 

  40. Franco-Vega A, Ramírez-Corona N, Palou E, López-Malo A (2016) Estimation of mass transfer coefficients of the extraction process of essential oil from orange peel using microwave assisted extraction. J Food Eng 170:136–143. https://doi.org/10.1016/j.jfoodeng.2015.09.025

    Article  CAS  Google Scholar 

  41. Benmoussa H, Farhat A, Romdhane M, Bouajila J (2016) Enhanced solvent-free microwave extraction of Foeniculum vulgare Mill. Essential oil seeds using double walled reactor. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.02.010

  42. Chen Z, Zhang W, Tang X et al (2016) Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC. Carbohydr Polym 144:263–270. https://doi.org/10.1016/j.carbpol.2016.02.063

    Article  CAS  PubMed  Google Scholar 

  43. Chen R, Jin C, Tong Z et al (2016) Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels. Carbohydr Polym 136:187–197. https://doi.org/10.1016/j.carbpol.2015.09.036

    Article  CAS  PubMed  Google Scholar 

  44. Rodríguez-Pérez C, Gilbert-López B, Mendiola JA et al (2016) Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis 37:1938–1946. https://doi.org/10.1002/elps.201600071

    Article  CAS  PubMed  Google Scholar 

  45. Kale A, Varadan R, Davis SC (2016) Methods for extracting and purifying non-denatured proteins

    Google Scholar 

  46. Choi I, Choi SJ, Chun JK, Moon TW (2006) Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J Food Process Preserv 30:407–419. https://doi.org/10.1111/j.1745-4549.2006.00075.x

    Article  CAS  Google Scholar 

  47. Zhou L, Xu Z, Zhang M et al (2011) Research of ultrasonic-microwave-assisted extraction technology of peanut protein. Guangdong Agric Sci 4:039

    Google Scholar 

  48. Jin J, Xu Z, Wei Z, Liu J (2009) Ultrasonic and microwave assisted extraction of rapeseed protein. Mod Food Sci Technol

    Google Scholar 

  49. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160. https://doi.org/10.1016/S0302-4598(96)05062-3

    Article  CAS  Google Scholar 

  50. Pakhomov AG, Miklavcic D, Markov MS (2010) Advanced electroporation techniques in biology and medicine, 1st edn. CRC Press, Boca Raton

    Book  Google Scholar 

  51. Lebovka NI, Bazhal MI, Vorobiev E (2001) Pulsed electric field breakage of cellular tissues: visualisation of percolative properties. Innovative Food Sci Emerg Technol 2:113–125. https://doi.org/10.1016/S1466-8564(01)00024-8

    Article  Google Scholar 

  52. Vorobiev E, Lebovka N (2008) Electrotechnologies for extraction from food plants and biomaterials. Springer-Verlag, New York

    Google Scholar 

  53. Polikovsky M, Fernand F, Sack M et al (2016) Towards marine biorefineries: selective proteins extractions from marine macroalgae Ulva with pulsed electric fields. Innovative Food Sci Emerg Technol 37:194–200. https://doi.org/10.1016/j.ifset.2016.03.013

    Article  CAS  Google Scholar 

  54. Bouras M, Grimi N, Bals O, Vorobiev E (2016) Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark. Ind Crops Prod 80:50–58

    Article  CAS  Google Scholar 

  55. Yu X, Bals O, Grimi N, Vorobiev E (2015) A new way for the oil plant biomass valorization: polyphenols and proteins extraction from rapeseed stems and leaves assisted by pulsed electric fields. Ind Crops Prod C:309–318. https://doi.org/10.1016/j.indcrop.2015.03.045

    Article  CAS  Google Scholar 

  56. Barba FJ, Boussetta N, Vorobiev E (2015) Emerging technologies for the recovery of isothiocyanates, protein and phenolic compounds from rapeseed and rapeseed press-cake: effect of high voltage electrical discharges. Innovative Food Sci Emerg Technol Complete:67–72. https://doi.org/10.1016/j.ifset.2015.06.008

    Article  CAS  Google Scholar 

  57. Yu X, Gouyo T, Grimi N et al (2016) Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery. Bioresour Technol 199:194–201. https://doi.org/10.1016/j.biortech.2015.08.073

    Article  CAS  PubMed  Google Scholar 

  58. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  59. Figueiredo M, Gomes C, Costa R et al (2009) Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes. Electrochim Acta 54:2630–2634. https://doi.org/10.1016/j.electacta.2008.10.074

    Article  CAS  Google Scholar 

  60. Jhong H-R, Wong DS-H, Wan C-C et al (2009) A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem Commun 11:209–211. https://doi.org/10.1016/j.elecom.2008.11.001

    Article  CAS  Google Scholar 

  61. Gore S, Baskaran S, Koenig B (2011) Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid–urea mixtures. Green Chem 13:1009. https://doi.org/10.1039/c1gc00009h

    Article  CAS  Google Scholar 

  62. Nam MW, Zhao J, Lee MS et al (2015) Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae. Green Chem 17:1718–1727. https://doi.org/10.1039/C4GC01556H

    Article  CAS  Google Scholar 

  63. Bi W, Tian M, Row KH (2013) Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J Chromatogr A 1285:22–30. https://doi.org/10.1016/j.chroma.2013.02.041

    Article  CAS  PubMed  Google Scholar 

  64. Park HE, Tang B, Row KH (2014) Application of deep eutectic solvents as additives in ultrasonic extraction of two phenolic acids from herba artemisiae scopariae. Anal Lett 47:1476–1484. https://doi.org/10.1080/00032719.2013.874016

    Article  CAS  Google Scholar 

  65. Tang B, Bi W, Zhang H, Row KH (2013) Deep eutectic solvent-based HS-SME coupled with GC for the Analysis of Bioactive Terpenoids in Chamaecyparis obtusa Leaves. Chromatographia 77:373–377. https://doi.org/10.1007/s10337-013-2607-3

    Article  CAS  Google Scholar 

  66. Xu K, Wang Y, Huang Y et al (2015) A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Anal Chim Acta 864:9–20. https://doi.org/10.1016/j.aca.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  67. Li N, Wang Y, Xu K et al (2016) Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein. Talanta 152:23–32. https://doi.org/10.1016/j.talanta.2016.01.042

    Article  CAS  PubMed  Google Scholar 

  68. Zeng Q, Wang Y, Huang Y et al (2014) Deep eutectic solvents as novel extraction media for protein partitioning. Analyst 139:2565–2573. https://doi.org/10.1039/C3AN02235H

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Gaëlle Sicaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sicaire, AG., Fine, F., Quinsac, A., Boukroufa, M., Rakotomanomana, N., Chemat, F. (2019). Innovative Techniques and Alternative Solvents for Green Extraction of Proteins from Pulses and Oleaginous Meals as Industrial Sources for Food and Feed. In: Li, Y., Chemat, F. (eds) Plant Based “Green Chemistry 2.0”. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3810-6_9

Download citation

Publish with us

Policies and ethics