Plant-Based Chemicals Extraction and Isolation

  • Hichem Ben Salah
  • Noureddine AlloucheEmail author
Part of the Green Chemistry and Sustainable Technology book series (GCST)


Plants represent a huge reservoir of bioactive molecules that are still little explored. Modern science is now focused on identifying the beneficial compounds from these sources to be used in pharmaceutical drugs. The search for new bioactive natural molecules is based on the choice of extraction, separation and structural identification techniques. This chapter provides a brief review of the specificity and usefulness of the most popular extraction methods in the phytochemistry field. In addition, this study describes the development of chromatographic separation and structural elucidation techniques of secondary metabolites, including analytical and preparative chromatography, mass spectrometry (MS), one- (1D) and two-dimensional (2D) Nuclear magnetic resonance (NMR) experiences. Today, the immense progress of these techniques has enabled chemists, biologists and pharmacists to discover bioactive molecules that have found applications in drug and food industries.


Extraction Identification Phytochemistry Separation Spectroscopy 


  1. 1.
    Levey M (1959) Chemistry and chemical technology in ancient Mesopotamia. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  2. 2.
    Barnes J, Anderson LA et al (2007) Herbal Medicines. A guide for Healthcare Professionals, 3rd edn. Pharmaceutical Press, London, pp 1–23Google Scholar
  3. 3.
    Rocha LG, Almeida J et al (2005) A review of natural products with antileishmanial activity. Phytomed 12:514–535CrossRefGoogle Scholar
  4. 4.
    Balandrian MFJ, Kjoke A et al (1985) Natural plant chemicals: source of industrial and medicinal materials. Sci J 228:1154–1160Google Scholar
  5. 5.
    Sticher O (2008) Natural product isolation. Nat Prod Rep 25:517–554PubMedCrossRefGoogle Scholar
  6. 6.
    Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Mol 15:7313–7352CrossRefGoogle Scholar
  7. 7.
    Evans WC (2002) General methods associated with the phytochemical investigation of herbal products. In Trease and Evans Pharmacognosy, 15 edn. New Delhi: Saunders (Elsevier), pp 137–148CrossRefGoogle Scholar
  8. 8.
    Borhan MZ, Ahmad R et al (2013) Impact of nanopowders on extraction yield of Centellaasiatica. Adv Mater Res 667:246–250CrossRefGoogle Scholar
  9. 9.
    Arya V, Thakur NM et al (2012) Preliminary phytochemical analysis of the extracts of Psidium leaves. J Pharmacogn Phytochem 1:1–5Google Scholar
  10. 10.
    Rathi BS, Bodhankar SL et al (2006) Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. Indian J Exp Biol 44:898–901PubMedGoogle Scholar
  11. 11.
    Handa SS, Khanuja SPS et al (2008) Extraction technologies for medicinal and aromatic plants, 1st edn, no. 66. United Nations Industrial Development Organization and the International Centre for Science and High Technology, ItalyGoogle Scholar
  12. 12.
    Mohameda RS, Mansoor GA (2002) The use of supercritical fluid extraction technology in food processing. Food Technol Magazine. The World Markets Research Centre, London, UKGoogle Scholar
  13. 13.
    Reverchon E, Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166CrossRefGoogle Scholar
  14. 14.
    Sticher O (2008) Natural product isolation. Nat Prod Rep 2008(25):517–554CrossRefGoogle Scholar
  15. 15.
    Hemwimon S, Pavasant P et al (2007) Microwave assisted extraction of antioxidative anthraquinone from roots of Morindacitrifolia. Sep Purif Technol 54:44–50CrossRefGoogle Scholar
  16. 16.
    Tonthubthimthong P, Chuaprasert S et al (2001) Supercritical CO2 extraction of Nimbin from neem seeds an experimental study. J Food Eng 47:289–293CrossRefGoogle Scholar
  17. 17.
    Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Tech 3:340–372CrossRefGoogle Scholar
  18. 18.
    Liza MS, Rahman RA et al (2010) Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthescrispus(PecahKaca). Food Bioprod Process 88:319–326CrossRefGoogle Scholar
  19. 19.
    Ganan N, Brignole EA (2011) Fractionation of essential oils with biocidal activity using supercritical CO2-experiments and modeling. J Supercrit Fluids 55:58–67CrossRefGoogle Scholar
  20. 20.
    Vidovic S, Mujic I et al (2011) Extraction of fatty acids from boletus edulis by subcritical and supercritical carbon dioxide. J Am Oil Chem Soc 88:1189–1196CrossRefGoogle Scholar
  21. 21.
    Aleksovski S, Sovova H et al (1998) Supercritical CO2 extraction and Soxhlet extraction of grape seeds oil. Bull Chem Technol Maced 17:129–134Google Scholar
  22. 22.
    Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373:23–30PubMedCrossRefGoogle Scholar
  23. 23.
    Serra AT, Seabra IJ et al (2010) Processing cherries (Prunus avium) using supercritical fluid technology. Part 1: recovery of extract fractions rich in bioactive compounds. J Supercrit Fluids 55:184–191CrossRefGoogle Scholar
  24. 24.
    Kehili M, Kammlott M et al (2017) Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod Process 102:340–349CrossRefGoogle Scholar
  25. 25.
    Kehili M, Schmidt LM et al (2016) Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia. Biotechnol Biofuels 261:1–12Google Scholar
  26. 26.
    Jadhav D, Rekha BN et al (2009) Extraction of vanillin from vanilla pods: a comparison study of conventional Soxhlet and ultrasound assisted extraction. J Food Eng 93:421–426CrossRefGoogle Scholar
  27. 27.
    Cares MG, Vargas Y et al (2009) Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina. Phys Procedia 3:169–178CrossRefGoogle Scholar
  28. 28.
    Huaneng X, Yingxin Z et al (2007) Ultrasonically assisted extraction of isoflavones from stem of Pueraria Lobata (Willd.) Ohwi and its mathematical model. Chin J Chem Eng 15:861–867CrossRefGoogle Scholar
  29. 29.
    Trusheva B, Trunkova D et al (2007) Different extraction methods of biologically active components from propolis: a preliminary study. Chem Cent J 1:1–4CrossRefGoogle Scholar
  30. 30.
    Ebrahim N, Kershi M et al (2014) antioxidant activity and anthocyanin content in flower of Mirabilis jalab L. collected from Yemen. World Appl Sci J 29:247–251Google Scholar
  31. 31.
    Yingngam B, Monschein M et al (2014) Ultrasound-assisted extraction of phenolic compounds from Cratoxylumformosum ssp. Formosum leaves using central composite design and evaluation of its protective ability against H2O2-induced cell death. Asian Pac J Trop Med 7:497–505CrossRefGoogle Scholar
  32. 32.
    Cho YJ, Hong JY et al (2006) Ultrasonication assisted extraction of resveratrol from grapes. J Food Eng 77:725–730CrossRefGoogle Scholar
  33. 33.
    Jain T, Jain V et al (2009) Microwave assisted extraction for phytoconstituents—An overview. Asian J Res Chem 2:19–25Google Scholar
  34. 34.
    Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurized solvent extraction. Phytochem Anal 13:105–113PubMedCrossRefGoogle Scholar
  35. 35.
    Ahuja S, Diehl D (2006) Sampling and Sample preparation. In: Ahuja S, Jespersen N (eds) Comprehensive analytical chemistry, vol. 47. Elsevier (Wilson & Wilson), Oxford, UK pp 15–40Google Scholar
  36. 36.
    Kothari V, Gupta A et al (2012) Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. J Nat Remedies 12:162–173Google Scholar
  37. 37.
    Sasaki K, Honda W et al (1998) A study of microwave sterilizer for injection ampoules (no. 4): application to sterilization of thermally labile drug solutions. J Pharm Sci Technol 58:125–135Google Scholar
  38. 38.
    Letellier M, Budzinski H (1999) Microwave assisted extraction of organic compounds. Analusis 27:259–270CrossRefGoogle Scholar
  39. 39.
    Mandal V, Mohan Y et al (2007) Microwave assisted extraction: an innovative and promising extraction tool for medicinal plant research. Pharmacog Rev 1:7–18Google Scholar
  40. 40.
    Li H, Deng Z et al (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. J Food Chem 130:928–936CrossRefGoogle Scholar
  41. 41.
    Thomas R, Tripathi R et al (2012) Comparative study of phenolics and antioxidant activity of phytochemicals of T. chebula extracted using microwave and ultrasonication. Int J Pharm Sci Res 3(1):194–197Google Scholar
  42. 42.
    Ben-Youssef S, Fakhfakh J et al (2017) Green extraction procedures of lipids from Tunisian date palm seeds. Ind Crops Prod 108:520–525CrossRefGoogle Scholar
  43. 43.
    Upadhyay R, Ramalakshmi K et al (2012) Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem 130:184–188CrossRefGoogle Scholar
  44. 44.
    Orio L, Alexanderu L et al (2012) UAE, MAE, SFE-CO2 and classical methods for the extraction of Mitragynaspeciosa leaves. Ultrason Sono chem 19:591–595PubMedCrossRefGoogle Scholar
  45. 45.
    Hahn-Deinstrop E (2000) Applied thin layer chromatography: best practice and avoidance of mistakes. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  46. 46.
    Sasidharan S, Chen Y et al (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1–10Google Scholar
  47. 47.
    Altemimi A, Lakhssassi N et al (2017) Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 6:42PubMedCentralCrossRefGoogle Scholar
  48. 48.
    Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis. 2nd edn. Chapman and Hall publishers, Springer, GermanyGoogle Scholar
  49. 49.
    Krishnananda PI, Amit GD et al (2017) Phytochemicals: extraction methods, identification and detection of bioactive compounds from plant extracts. J Pharmacogn Phytochem 6:32–36Google Scholar
  50. 50.
    Salah HB, Jarraya R et al (2002) Flavonoltriglycosides from the leaves of Hammada scoparia (POMEL) ILJIN. Chem Pharm Bull 50:1268–1270PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang Z, Pang X et al (2005) Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chem 90:47–52CrossRefGoogle Scholar
  52. 52.
    Hostettmann K, Wolfender JL et al (1997) Rapid detection and subsequent isolation of bioactive constituents of crude plant extracts. Planta Med 63:2–10PubMedCrossRefGoogle Scholar
  53. 53.
    Guiochon G (2001) Basic principles of chromatography. In: Günzler H, Williams A (eds) Handbook of analytical techniques. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 189–194Google Scholar
  54. 54.
    Yang F-Q, Zuo H-L et al (2013) Preparative gas chromatography and its applications. J Chromatogr Sci 51:704–715PubMedCrossRefGoogle Scholar
  55. 55.
    Hancock WS (1990) High performance liquid chromatography in biotechnology. Wiley-Interscience, New Jersey, USAGoogle Scholar
  56. 56.
    Babaee S, Beiraghi A (2010) Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples. Anal Chim Acta 662:9–13PubMedCrossRefGoogle Scholar
  57. 57.
    Michel T, Khlif I et al (2015) UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea Europaea organs of Koroneiki and Chetoui varieties. Phytochem Lett 11:424–439CrossRefGoogle Scholar
  58. 58.
    Nyiredy S (2001) Planar chromatography: a retrospective view for the third millennium. Springer Scientific Publisher, DebrecenGoogle Scholar
  59. 59.
    Rajopadhye AA, Namjoshi TP et al (2012) Rapid validated HPTLC method for estimation of piperine and piperlongumine in root of piper longum extract and its commercial formulation. Rev Bras de Farmacogn 22:1355–1361CrossRefGoogle Scholar
  60. 60.
    Chaitanya D (2014) flash chromatography and preparative HPLC. Res Desk 3:434–439Google Scholar
  61. 61.
    Rouessac F, Rouessac A et al (2004) Analyse Chimique, Méthodes et techniques instrumentales modernes, 6ème édn. Dunod, ParisGoogle Scholar
  62. 62.
    Silverstein RM, Webster FX et al (2007) Identification spectrométrique de composés organiques, 2ème édn. De BoeckGoogle Scholar
  63. 63.
    Bernard AS, Clède S et al (2014) Techniques expérimentales en chimie, 2ème édn. Dunod, ParisGoogle Scholar
  64. 64.
    Richard BVB, LeRoy BM et al (1988) Comparison of electron impact, desorption chemical ionization, field desorption, and fast atom bombardment mass spectra of nine monosubstituted Group VI metal carbonyls. Anal Chem 60:1314–1318CrossRefGoogle Scholar
  65. 65.
    Huang EC, Wachs H, Conboy JJ et al (1990) Atmospheric Pressure Ionization Mass Spectrometry. Anal Chem 62:713–725Google Scholar
  66. 66.
    Cech NB, Enke CG (2001) Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom Rev 20:362–387PubMedCrossRefGoogle Scholar
  67. 67.
    Ching J, Soh WL et al (2012) Identification of active compounds from medicinal plant extracts using gas chromatography-mass spectrometry and multivariate data analysis. J Sep Sci 35:53–59PubMedCrossRefGoogle Scholar
  68. 68.
    Bouchonnet S, Libong D (2004) Le couplage chromatographie en phase gazeuse-spectrométrie de masse. Actual Chim 7–14Google Scholar
  69. 69.
    Kolsi RBA, Salah HB et al (2017) Sulphated polysaccharide isolated from Sargassumvulgare: characterization and hypolipidemic effects. Carbohydr Polym 170:148–159PubMedCrossRefGoogle Scholar
  70. 70.
    De Hoffman E, Stroobant V (2001) Mass spectrometry: principles and applications, 2ème edn. WileyGoogle Scholar
  71. 71.
    Mroczek T, Ndjoko K et al (2004) On-line structure characterization of pyrrolizidine alkaloids in Onosmastellulatum and Emilia coccinea by liquid chromatography–ion-trap mass spectrometry. J Chromatogr A 1056:91–97PubMedCrossRefGoogle Scholar
  72. 72.
    Bouaziz-Ketata H, Zouari N et al (2015) Flavonoid profile and antioxidant activities of methanolic extract of Hyparrheniahirta (L.) Stapf. Indian J Exp Biol 53:208–215PubMedGoogle Scholar
  73. 73.
    Dugo P, Mondello L et al (2000) LC-MS for the identification of oxygen heterocyclic compounds in citrus essential oils. J Pharm Biomed Anal 24:147–154PubMedCrossRefGoogle Scholar
  74. 74.
    La Torre GL, Saitta M, Vilasi F, Pellicanò T, Dugo G (2006) Direct determination of phenolic compounds in Sicilian wines by liquid chromatography with PDA and MS detection. Food Chem 94:640–650CrossRefGoogle Scholar
  75. 75.
    Andries PB, Thomas RC et al (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59:2642–2646CrossRefGoogle Scholar
  76. 76.
    Kolsi RBA, Salah HB et al (2017) Effects of Cymodocea nodosa extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. Biomed Pharmacother 89:257–267CrossRefGoogle Scholar
  77. 77.
    Gunther H (1996) La Spectroscopie de RMN: principes de base, concepts et applications de la Spectroscopie de Resonance Magnétique Nucléaire du Proton et du Carbone 13 en Chimie. Elsevier Masson, ParisGoogle Scholar
  78. 78.
    Bross-Walch N, Kühn T et al (2005) Strategies and tools for structure determination of natural products using modern methods of NMR spectroscopy. Chem Biodivers 2:147–177CrossRefGoogle Scholar
  79. 79.
    Giraudeau P, Tea I et al (2014) Reference and normalization methods: essential tools for the intercomparison of NMR spectra. J Pharm Biomed Anal 93:3–16PubMedCrossRefGoogle Scholar
  80. 80.
    Abraham RJ, Fisher J et al (1988) Introduction to NMR spectroscopy. Wiley, ChichesterGoogle Scholar
  81. 81.
    Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon Press, OxfordGoogle Scholar
  82. 82.
    Sanders JKM, HunterBK (1993) Modern NMR spectroscopy, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  83. 83.
    Mahrous EA, Farag MA (2015) Two-dimensional NMR spectroscopic approaches for exploring plant metabolome: a review. J Adv Res 6:3–15PubMedCrossRefGoogle Scholar
  84. 84.
    Friebolin H (2010) Basic one- and -two-dimensional NMR spectroscopy. 5th edn. Wiley VCHGoogle Scholar
  85. 85.
    Breton RC, Reynolds WF (2013) Using NMR to identify and characterize natural products. Nat Prod Rep 30:501–524PubMedCrossRefGoogle Scholar
  86. 86.
    Fuloria NK, Fuloria S (2013) Structural elucidation of small organic molecules by 1D, 2D and multi-dimensional-solution NMR spectroscopy. Anal Bioanal Tech 11:1–8Google Scholar
  87. 87.
    Ben Youssef S, Fakhfakh J et al (2016) Efficient purification and complete NMR characterization of galactinol, sucrose, raffinose, and stachyose isolated from Pinus halepensis (Aleppo pine) seeds using acetylation procedure. J Carbohydr Chem 35:224–237CrossRefGoogle Scholar
  88. 88.
    Aganova O, Galiullina L et al (2014) The study of the conformation and dynamics of the new quaternary phosphonium salts by NMR spectroscopy. Appl Magn Reson 45:653–665CrossRefGoogle Scholar
  89. 89.
    Khodov I, Efimov S et al (2014) Determination of preferred conformations of ibuprofen in chloroform by 2D NOE spectroscopy. Eur J Pharm Sci 65:65–73PubMedCrossRefGoogle Scholar
  90. 90.
    Canet D, Boubel J-C et al (2002) La RMN: concepts, méthodes et applications, 2ème édn. DunodGoogle Scholar
  91. 91.
    Keskes H, Litaudon M et al(2014)Antioxidant and α-amylase inhibitory activities of extract and isolates from Zygogynumpancheri subsp. Arrhantum. J Asian Nat Prod Res 16:1132–1138Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory of Organic Chemistry, Natural Substances Team, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations