Carob as Source for Sustainable Ingredients and Products

  • Ikram BoublenzaEmail author
  • Ibtissam Boublenza
  • Abdelhak Boublenza
  • Sara Madji
  • Anne-Sylvie Fabiano-Tixier
  • Farid Chemat
Part of the Green Chemistry and Sustainable Technology book series (GCST)


The carob is a dome-shaped evergreen tree that is a member of the pea family (Fabaceae). Its fruit has been used for human consumption and as animal feed in the Mediterranean countries for centuries and was also widely used as a herbal remedy in traditional folk’s medicine. In this paper, an in-depth literature review was conducted about this species discussing its history, origins, main current uses, components (both nutrient and bioactive), biological activities, and potential applications as the source of sustainable ingredients and products. Among the many bioactive compounds that were found in carob, the most well studied are polyphenols. The levels of these compounds were found to vary depending on many factors, such as the variety, plant part, geographic location, roasting and extraction conditions, and even analysis methods. In the light of these researches, it was recognized that carob offers several biological activities including antioxidant, anticancer, and anti-diabetic due to the presence of a high quantity of pinitol and antibacterial. Rich in sugars, proteins, and minerals, the carob has a vast range of industrial applications such as cacao substitute, sugars substitute, free from gluten making it cereal-derived foods for celiac people.


Carob Nutritional components Bioactive molecules Biological activities 


  1. 1.
    Rejeb NM (1995) Le caroubier en Tunisie: situation et perspectives d’amélioration. Quel avenir pour l’amélioration des plantes? Ed. AUPELF-UREF. John Libbey Eurotext, pp 79–85Google Scholar
  2. 2.
    Battle I, Tous J (1997) Carob tree. Ceratonia siliqua L., promoting the conservation and use of under-utilised and neglected crops. Institute of Plant Genetics and Crop Plant Research and Gatersleben/International Plant Genetic Resource InstituteGoogle Scholar
  3. 3.
    Oziyci HR, Tetik N, Turhan I, Yatmaz E, Ucgun K, Akgul H, Gubbuk H, Karhan M (2014) Mineral composition of pods and seeds of wild and grafted carob (Ceratonia siliqua L.) fruits. Sci Hortic 167:149–152CrossRefGoogle Scholar
  4. 4.
    Durazzo A, Turfani V, Narducci V, Azzini E, Maiani G, Carcea M (2014) Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem 153:109–113CrossRefGoogle Scholar
  5. 5.
    Nasar-Abbas SM, Huma Z, Vu TH, Khan MK, Esbenshade H, Jayasena V (2016) Carob kibble: a bioactive-rich food ingredient. Compr Rev Food Sci Food Saf: 63–72CrossRefGoogle Scholar
  6. 6.
    Bengoechea C, Romero A, Villanueva A, Moreno G, Alaiz M, Millan F, Guerrero A, Puppo MC (2008) Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem 107:675–683CrossRefGoogle Scholar
  7. 7.
    Youssef MKE, El-Manfaloty MM, Ali MH (2013) Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food Public Health 3(6):304–308Google Scholar
  8. 8.
    Bernardo-Gil MG, Roque R, Roseiro LB, Duarte LC, Girio F, Esteves P (2011) Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J Supercrit Fluids 59:36–42CrossRefGoogle Scholar
  9. 9.
    Ali-Delille L (2010). Les plantes médicinales d’Algérie, vol 82. Berti EditionsGoogle Scholar
  10. 10.
    Rol F (1973) Locust bean gum. In: Whistler RL (ed) Industrial gums: polysaccharides and their derivatives, 2nd edn. Academic Press, New York, pp 323–337CrossRefGoogle Scholar
  11. 11.
    De Candolle A (1883) L’origine des plantes cultivées. Balière, ParísGoogle Scholar
  12. 12.
    Vavilov NI (1951) The origin, variation, immunity, and breeding of cultivated plants [translated from the Russian by K.S. Chester]. The Ronald Press Co., New YorkGoogle Scholar
  13. 13.
    Shepperd VD (2008) Fabaceae-pea family Ceratonia siliqua L. woody plant seed manual, pp 371–373Google Scholar
  14. 14.
    Tetik N, Turfan I, Karhan M, Oziyci HR (2010) Characterization of, and 5-Hydroxymethylfurfural concentration in carob pekmez. Gida 35(4):1–6Google Scholar
  15. 15.
    Yousif AK, Alghzawi HM (2000) Processing and characterization of carob powder. Food Chem 69:283–287CrossRefGoogle Scholar
  16. 16.
    Jaradat NA (2005) Medical plants utilized in Palestinian folk medicine for treatment of diabetes mellitus and cardiac diseases. Al-Aqsa UniversityGoogle Scholar
  17. 17.
    Cakılcıoğlu U, Turkoğlu I (2007) Plants and fruits used for cholesterol treatment by the folk in Elaziğ. Phytologia Balcanica 13:239–245Google Scholar
  18. 18.
    Lev E, Amar Z (2002) Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J Ethnopharmacol 82:131–145CrossRefGoogle Scholar
  19. 19.
    Gutzwiller A (2016) Aliments diététiques contenant de la caroube contre la diarhhée du porcelet sevré. Recherche agronomique suisse 7(6):290–295Google Scholar
  20. 20.
    Kotrotsios N, Christaki E, Bonos E, Florou-Paneri P (2012) Dietary carob on growth performance and meat quality of fattening pigs. Asian-Aust J Anim Sci 25:880–885CrossRefGoogle Scholar
  21. 21.
    Marakis S (1996) Carob bean in food and feed: current status and future potentials—a critical appraisal. J Food Sci Technol-Mysore 33(5):365–383Google Scholar
  22. 22.
    Gravador RS, Luciano G, Jongberg S, Bognanno M, Scerra M, Andersen ML, Lund MN, Priolo A (2015) Fatty acids and oxidative stability of meat from lambs fed carob-containing diets. Food Chem 182:27–34CrossRefGoogle Scholar
  23. 23.
    Priolo Q, Vasta V (2007) Effects of tannin-containing diets on small ruminant meat quality. Ital J Anim Sci 6(SUPPL. 1):527–530CrossRefGoogle Scholar
  24. 24.
    Cepo DV, Mornar A, Nigovic B, Kremer D, Radanovic D, Dragojevic IV (2014) Optimization of roasting conditions as an useful approach for increasing antioxidant activity of carob powder. LWT-Food Sci Technol 58:578–586CrossRefGoogle Scholar
  25. 25.
    Barroso LS, de Oliveira VR, Garcia AV, Doneda D, Ouriques LA, Vieira MM (2015) Physicochemical and sensory evaluation of sandwich cookies made with carob. Adv J Food Sci Technol 9(4):290–295CrossRefGoogle Scholar
  26. 26.
    Dos Santos LM, Tulio LT, Campos LF, Domeles MR, Hecke Krüger CC (2015) Glycemic response to carob (Ceratonia siliqua L.) in healthy subjects and with the in vitro hydrolysis index. Nutricion hospitaliria 31(1):482–487Google Scholar
  27. 27.
    Baston O (2016) Production and analysis of Ceratonia siliqua L. Powders Ann Food Sci Technol 17:50–54Google Scholar
  28. 28.
    Rosa CS, Tessele K, Prestes RC, Silveira M, Franco F (2015) Effect of substituting of cocoa powder for carob flour in cakes made with soy and banana flours. Int Food Res J 22:2111–2118Google Scholar
  29. 29.
    Makris DP, Kefalas P (2004) Carob pods (Ceratonia siliqua L.) as a source of polyphenolic antioxidants. Food Technol Biotechnol 42:105–108Google Scholar
  30. 30.
    Santos M, Rodrigues A, Teixeira JA (2005) Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides, NRRL B512 (f). Biochem Eng J 25:1–6CrossRefGoogle Scholar
  31. 31.
    Bernardo-Gil MG, Roque R, Roseiro BL, Duarte LC, Girio F, Esteves P (2011) Supercritical extraction of carob kibbles (Ceratonia siliqua L.). J Supercrit Fluids 59:36–42CrossRefGoogle Scholar
  32. 32.
    Nasar-abbas SM, Huma Z, Vu T-H, Khan MK, Esbenshade H, Jayasena V (2016) Carob kibble: a bioactive-rich food ingredient. Compr Rev Food Sci Food Saf 15:63–72CrossRefGoogle Scholar
  33. 33.
    Avallone R, Cosenza F, Farina F, Baraldi C, Baraldi M (2002) Extraction and purification from Ceratonia siliqua of compounds acting on central and peripheral benzodiazepine receptors. Fitoterapia 73:390–396CrossRefGoogle Scholar
  34. 34.
    Iipumbu L (2008) Compositional analysis of locally cultivated carob (Ceratonia siliqua) cultivars and development of nutritional food products for a range of market sectors. University of Stellenbosch, StellenboschGoogle Scholar
  35. 35.
    Correiaa PJ, Saavedraa T, Gamaa F, Miguela MG, Varennesb A, Pestana M (2018) Biologically active compounds available in Ceratonia siliqua L. grown in contrasting soils under Mediterranean climate. Sci Hortic 235:228–234CrossRefGoogle Scholar
  36. 36.
    Ozcan MM, Arslan D, Gokcalik H (2007) Some compositional properties and mineral contents of carob (Ceratonia siliqua) fruit, flour and syrup. Int J Food Sci Nutr 58:652–658CrossRefGoogle Scholar
  37. 37.
    Youssef MKE, El-Manfaloty MM, Ali HM (2013) Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food Public Health:304–308Google Scholar
  38. 38.
    Dakia PA, Wathelet B, Paquot M (2007) Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem 102:1368–1374CrossRefGoogle Scholar
  39. 39.
    Goulas V, Stylos E, Chatziathanasiadou MV, Mavromoustakous T, Tzakos AG (2016) Review functional components of carob fruit: linking the chemical and biological space. Int J Mol Sci 17:1875. Scholar
  40. 40.
    Sarni-manchado P, Cheynier V (2006) Les polyphénols en agroalimentaire. TEC&DOC, LavoisierGoogle Scholar
  41. 41.
    Roseiro LB, Duarte LC, Oliveira DL, Roque R, Bernardo-Gil MG, Martins AI, Sepúlveda C, Almeida J, Meireles M, Gírio FM, Rauter AP (2013a) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: effect on the phenolic profile and antiproliferative activity. Ind Crops Prod 47:132–138CrossRefGoogle Scholar
  42. 42.
    Roseiro LB, Tavares CS, Roseiro JC, Rauter AP (2013) Antioxidants from aqueous decoction of carob pods biomass (Ceratonia siliqua L.): optimisation using response surface methodology and phenolic profile by capillary electrophoresis. Ind Crops Prod 44:119–126CrossRefGoogle Scholar
  43. 43.
    Papagiannopoulos M, Wollseifen HR, Mellenthin A, Haber B, Galensa R (2004) Identification and quantification of polyphenols in carob fruits (Ceratonia siliqua L.) and derived products by HPLC-UV-ESI/MSn. J Agric Food Chem 52:3784–3791CrossRefGoogle Scholar
  44. 44.
    Owen RW, Haubner R, Hull WE, Erben G, Spiegelhalder B, Bartsch H, Haber B (2003) Isolation and structure elucidation of the major individual polyphenols in carob fibre. Food Chem Toxicol 41:1727–1738CrossRefGoogle Scholar
  45. 45.
    Tetik N, Yüksel E (2014) Ultasound-assisted extraction of d-pinitol from carob using response surface methodology. Ultrason Sonochem 21:860–865CrossRefGoogle Scholar
  46. 46.
    Kumazawa S, Taniguchi M, Suzuki Y, Shimura M, Kwon M, Nakayama T (2002) Antioxidant activity of polyphenols in carob pods. J Agric Food Chem 50:373–377CrossRefGoogle Scholar
  47. 47.
    Zunft HJF, Lüder W, Harde A, Haber B, Graubaum HJ, Koebnick C, Grünwald J (2003) Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients. Eur J Nutr 42:235–242Google Scholar
  48. 48.
    Klenow S, Glei M (2009) New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol In Vitro 23:1055–1061CrossRefGoogle Scholar
  49. 49.
    Cháfer A, Berna A (2014). Study of kinetics of the d-pinitol extraction from carob pods using supercritical CO2. J Supercrit Fluids:212–215CrossRefGoogle Scholar
  50. 50.
    Priolo A, Lanza M, Biondi L, Pappalardo P, Young OA (1998) Effect of partially replacing dietary barley with 20% carob pulp on post-weaning growth, and carcass and meat characteristics of Comisana lambs. Meat Sci 50(3):355–363CrossRefGoogle Scholar
  51. 51.
    Berna, A, Perez-Gago MB, Guardiola VG, Salazar D, Mulet A (1997) Effect of temperature on isobutyric acid loss during roasting of carob kibble. J Agric Food Chem 45:4084–4087CrossRefGoogle Scholar
  52. 52.
    Cantalejo MJ (1997) Effects of roasting temperature on the aroma components of carob (Ceratonia siliqua L.). Agric Food Chem 45:1345–1350CrossRefGoogle Scholar
  53. 53.
    Almanasrah M, Roseiro LB, Bogel-Lukasik R, Carvalheiro F, Brazinha C, Crespo J, Kallioinen M, Mänttäri M, Duarte LC (2015) Selective recovery of phenolic compounds and carbohydrates from carob kibbles using water-based extraction. Ind Crops Prod 70:443–450CrossRefGoogle Scholar
  54. 54.
    Almanasrah M, Brazinha C, Kallioinen M, Duarte LC, Roseiro LB, Bogel-Lukasik R, Carvalheiro F, Mänttäri M, Crespo JG (2015) Nanofiltration and reverse osmosis as a platform for production of natural botanic extracts: the case study of carob by-products. Sep Purif Technol 149:389–397CrossRefGoogle Scholar
  55. 55.
    Jeantet R, Croguennec T, Schuck P, Brule G (2006) Sciences des aliments. Biochimie. Microbiologie. Procédés. Produits. I. Stabilisation biologique et physico-chimique. Techniques & Documentation. 122Google Scholar
  56. 56.
    Amarowicz R (2009) Antioxidant activity of Maillard reaction products. Eur J Lipid Sci Technol 111:109–111CrossRefGoogle Scholar
  57. 57.
    Kroh LW (1994) Caramelisation in food and beverages. Food Chem 51:373–379CrossRefGoogle Scholar
  58. 58.
    Joslyn MA, Nishira H, Ito S (1968) Leucoanthocyanins and related phenolic compounds of carob pods (Ceratonia siliqua). J Sci Food Agric 19:543–550CrossRefGoogle Scholar
  59. 59.
    Saura-Calixto F, Perez-Jimenez J, Tourino S, Serrano J, Fuguet E, Torres JL, Goni I (2010) Proanthocyanidin metabolites associated with dietary fiber from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Mol Nutr Food Res 54:939–946CrossRefGoogle Scholar
  60. 60.
    Babovic N, Djilas S, Jadranin M, Vajs V, Ivanovic J, Petrovic S, Zizovic I (2010) Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innovative Food Sci Emerg Technol 11:98–107CrossRefGoogle Scholar
  61. 61.
    Ak T, Gulcin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174:27–37CrossRefGoogle Scholar
  62. 62.
    Corsi L, Avallone R, Cosenza F, Farina F, Baraldi C, Baraldia M (2002) Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 73:674–684CrossRefGoogle Scholar
  63. 63.
    Wolever TMS (1990) The glycemic index. In: Borne GH (ed) Aspects of some vitamins, minerals and enzymes in health and disease. Karger, Basel, Switzerland, pp 120–185Google Scholar
  64. 64.
    Banuls C, Rovira-Llopis S, Falcon R, Veses S, Monzo N, Víctor MV, Rocha M, Hermandez-Mijares A (2016) A chronic consumption of an inositol-enriched carob extract improves postprandial glycaemia and insulin sensitivity in healthy subjects: a randomized controlled trial. Clin Nutr 35:600–607CrossRefGoogle Scholar
  65. 65.
    Mohamed DA, Hamed IM, Al-Okbi SY (2008) Ceratonia siliqua pods as a cheap source of functional food components. DtschLebensmittRundsch 104:25–29Google Scholar
  66. 66.
    Croze ML, Soulage CO (2013) Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 95:1811–1827CrossRefGoogle Scholar
  67. 67.
    Ruiz-Roso B, Quintela JC, Fuente E, Haya J, Pérez-Olleros L (2010) Insoluble carob fiber rich in polyphenols lowers total and LDL cholesterol in hypercholesterolemicsujects. Plant Foods Hum Nutr 65:50–56CrossRefGoogle Scholar
  68. 68.
    Tassou CC, Drosinos EH, Nychas GJE (1997) Weak antimicrobial effect of carob (Ceratonia siliqua) extract against food-related bacteria in culture media and model food systems. World J MicrobBiot 13:479–481CrossRefGoogle Scholar
  69. 69.
    Meziani S, Oomah BD, Zaidi F, Simon-Lever TA, Bertrand C, Zaidi-Yahiaoui R (2014) Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microb Pathog 78:95–102CrossRefGoogle Scholar
  70. 70.
    Lee YP, Mori TA, Sipsas S, Barden A, Puddey IB, Burke V, Hall RS, Hodgson JM (2006) Lupin-enriched bread increases satiety and reduces energy intake acutely. Am J Clin Nutr 84(5):975–980CrossRefGoogle Scholar
  71. 71.
    Aksit S, Caglayan S, Cukan R, Yaprak I (1998) Carob bean juice: a powerful adjunct to oral rehydration solution treatment in diarrhoea. Paediatr Perinat Epidemiol 12(2):176–181CrossRefGoogle Scholar
  72. 72.
    Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I (2014) Effect of carob flour addition on the rheological properties of gluten-free breads. Food Bioprocess Technol 7:868–876CrossRefGoogle Scholar
  73. 73.
    Haber B (2002) Carob fiber benefits and applications. Cereal Food World 47(8):365–9Google Scholar
  74. 74.
    Mis A, Grundas S, Dziki D, Laskowski J (2012) Use of farinograph measurements for predicting extensograph traits of bread dough enriched with carob fiber and oat wholemeal. J Food Engr 108(1):1–12CrossRefGoogle Scholar
  75. 75.
    Çag Lar A, Erol1 N, Elgün MS (2012) Effect of carob flour substitution on chemical and functional properties of Tarhana. J Food Process Preserv:1745–4549Google Scholar
  76. 76.
    Sanchez-Muniz FJ, Botega DZ, Lorenzo L, Marmesat S, Bastida S, Perez-Olleros L, Ruiz-Roso B (2007) A non-extractable condensed-tannins fiber reduces thermal oxidation in oils at frying temperature. Eur J Lipid Sci Tech 109(12):1218–1225CrossRefGoogle Scholar
  77. 77.
    Botega ZD, Bastida S, Marmesat S, Perez-Olleros L, Ruiz-Roso B, Sanchez-Muniz FJ (2009) Carob fruit polyphenols reduce tocopherol loss, triacylglycerol polymerization and oxidation in heated sunflower oil. J Am Oil Chem Soc 86(5):419–425CrossRefGoogle Scholar
  78. 78.
    Atasoy AF (2009) The effects of carob juice concentrates on the properties of Yoghurt. Intl J Dairy Technol 62(2):228–233CrossRefGoogle Scholar
  79. 79.
    Rababah TM, Al-u’datt M, Ereifej K, Almajwal A, Al-Mahasneh M, Brewer S, Alsheyab F, Yang W (2013) Chemical, functional and sensory properties of carob juice. J Food Qual 36(4):238–44CrossRefGoogle Scholar
  80. 80.
    Vaheed H, Shojaosadati SA, Galip H (2011) Evaluation and optimization of ethanol production from carob pod extract by Zymomonasmobilis using response surface methodology. J Ind Microbiol Biotechnol 38:101–111CrossRefGoogle Scholar
  81. 81.
    Turhan I, Bialka KL, Demirci A, Karhan M (2010) Enhanced lactic acid production from carob extract by Lactobacillus casei using Invertase pretreatment. Food Biotechnol 24:364–374CrossRefGoogle Scholar
  82. 82.
    Carvalheiro F, Moniz P, Duarte LC, Esteves MP, Gírio FM (2011) Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J Ind Microbiol Biotechnol 38:221–227CrossRefGoogle Scholar
  83. 83.
    Pramod T, Lingappa K (2012) Immobilization of Aspergillus niger in Hen Egg White for the production of Citric acid using carob pod extract. J Microbiol Biotechnol Res 2Google Scholar
  84. 84.
    Roukas T, Biliaderis CG (1995) Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl Biochem Biotechnol 55:27–44CrossRefGoogle Scholar
  85. 85.
    Andrade CT, Azero EG, Luciano L, Goncalves MP (1999) Solution properties of the galactomannans extracted from the seeds of Caesalpiniapulcherrima and Cassia javanica: comparison with locust bean gum. Intl J Biol Macromol 26(2–3):181–185CrossRefGoogle Scholar
  86. 86.
    Turhan I, Bialka KL, Demirci A, Karhan M (2010) Ethanol production from carob extract by using Saccharomyces cerevisiae. BioresourTechnol 101:5290–5296CrossRefGoogle Scholar
  87. 87.
    Sahin H, Topuz A, Pischetsrieder M, Ozdemir F (2009) Effect of roasting process on phenolic, antioxidant and browning properties of carob powder. Eur Food Res Technol 230(1):155–161CrossRefGoogle Scholar
  88. 88.
    Arrighi WJ, Hartman TG, Ho C-T (1997) Carob bean aroma dependence on roasting conditions. Perfumer Flavorist 22(1):31–41Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ikram Boublenza
    • 1
    Email author
  • Ibtissam Boublenza
    • 1
  • Abdelhak Boublenza
    • 1
  • Sara Madji
    • 2
  • Anne-Sylvie Fabiano-Tixier
    • 2
  • Farid Chemat
    • 2
  1. 1.Sarl Boublenza Agroalimentaire et Produits AgricolesTlemcenAlgeria
  2. 2.Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, GREEN Extraction TeamAvignonFrance

Personalised recommendations