Skip to main content

Mobility in MANET Using Robot: A Review

  • Conference paper
  • First Online:
Futuristic Trends in Network and Communication Technologies (FTNCT 2018)

Abstract

Recently, MANET (Mobile Ad Hoc Network) researchers have shown increased interest towards using mobile robot technology for their testbed platforms. Despite the existence of articles that discuss the usage of mobile robot technology pertaining to MANET testbed from the perspective of MANET researcher, the discussion provided in the papers are rather lacklustre as it is not the sole purpose of those articles. Hence, this review aims to discuss MANET testbeds that were facilitated with mobile robot technology from previous undertaken researches. With the wealth of information provided in this paper, it is hoped that this paper will be the ultimate source of reference for other MANET researchers who need to choose the most suitable mobile robots with real mobility in their MANET testbeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko, J., Stewart, B., Fox, D., Konolige, K., Limketkai, B.: A practical, decision-theoretic approach to multi-robot mapping and exploration. In: Proceedings of the 20003 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vol. 4, pp. 3232–3238 (2003). https://doi.org/10.1109/iros.2003.1249654

  2. Konolige, K., et al.: CentiBOTS: large-scale robot teams. In: Proceedings from the 2003 International Workshop on Multi-robot Systems: From Swarms to Intelligent Autonoma, vol. 2, pp. 193–204. Springer, Berlin (2003)

    Google Scholar 

  3. Konolige, K., et al.: Centibots: very large scale distributed robotic teams. In: Ang, M.H., Khatib, O. (eds.) Experimental Robotics IX. STAR, vol. 21, pp. 131–140. Springer, Heidelberg (2006). https://doi.org/10.1007/11552246_13

    Chapter  Google Scholar 

  4. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., Stewart, B.: Distributed multi-robot exploration and mapping. Proc. IEEE 94(7), 1325–1339 (2006). https://doi.org/10.1109/JPROC.2006.876927

    Article  Google Scholar 

  5. Stewart, B., Ko, J., Fox, D., Konolige, K.: The revisiting problem in mobile robot map building: a hierarchical bayesian approach. In: Uffe, K., Christopher, M. (eds.) Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence (UAI’03), pp. 551–558. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  6. Sibley, G.T., Rahimi, M.H., Sukhatme, G.: Robomote: a tiny mobile robot platform for large-scale ad- hoc sensor networks. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA 2002), vol. 2, pp. 1143–1148. IEEE (2002)

    Google Scholar 

  7. Rahimi, M., Shah, H., Sukhatme, G.S., Heideman, J., Estrin, D.: Studying the feasibility of energy harvesting in a mobile sensor network. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation (ICRA 2003), vol. 1, pp. 19–24 (2003). https://doi.org/10.1109/robot.2003.1241567

  8. Dhariwal, A., Sukhatme, G.S., Requicha, A.A.G.: Bacterium-inspired robots for environmental monitoring. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation, (ICRA 2004), vol. 2, pp. 1436–1443 (2004). https://doi.org/10.1109/robot.2004.1308026

  9. Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.: Robomote: enabling mobility in sensor networks. In: 4th International Symposium on Information Processing in Sensor Networks (IPSN 2005), pp. 404–409 (2005). https://doi.org/10.1109/ipsn.2005.1440957

  10. Dantu, K., Sukhatme, G.S.: Detecting and tracking level sets of scalar fields using a robotic sensor network. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA 2007), pp. 3665–3672 (2007). https://doi.org/10.1109/robot.2007.364040

  11. Antonelli, G., Arrichiello, F., Caccavale, F., Marino, A.: Decentralized time-varying formation control for multi-robot systems. Int. J. Robot. Res. 33(7), 1029–1043 (2014). https://doi.org/10.1177/0278364913519149

    Article  Google Scholar 

  12. Li, W., Shen, W.: Swarm behavior control of mobile multi-robots with wireless sensor networks. J. Netw. Comput. Appl. 34(4), 1398–1407 (2011). https://doi.org/10.1016/j.jnca.2011.03.023

    Article  Google Scholar 

  13. White, B., Lepreau, J., Guruprasad, S.: Lowering the barrier to wireless and mobile experimentation. ACM SIGCOMM Comput. Commun. Rev. 33(1), 47–52 (2003). https://doi.org/10.1145/774763.774770

    Article  Google Scholar 

  14. Jiménez-González, A., Martinez-de Dios, J.R., Ollero, A.: Testbeds for ubiquitous robotics: a survey. Robot. Auton. Syst. 61(12), 1487–1501 (2013). https://doi.org/10.1016/j.robot.2013.07.006

    Article  Google Scholar 

  15. Johnson, D., Stack, T., Fish, R., Flickinger, D., Ricci, R., Lepreau, J.: TrueMobile: a mobile robotic wireless and sensor network testbed. In: Proceedings of the 25th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2006). IEEE Computer Society (2006)

    Google Scholar 

  16. Johnson, D., et al.: Mobile emulab: a robotic wireless and sensor network testbed. In: Proceedings of the 25th International Conference on Computer Communications (INFOCOM 2006), pp. 1–12. IEEE (2006). https://doi.org/10.1109/infocom.2006.182

  17. Flickinger, D.M.: Motion planning and coordination of mobile robot behavior for medium scale distributed wireless network experiments. Master’s thesis, The University of Utah (2007)

    Google Scholar 

  18. Johnson, D., et al.: Robot couriers: precise mobility in a wireless network testbed. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems (SenSys 2005), pp. 276–277. ACM, New York (2005). https://doi.org/10.1145/1098918.1098952

  19. Johnson, D.: Design and implementation of a mobile wireless sensor network testbed. Master thesis, University of Utah (2010)

    Google Scholar 

  20. De, P.: Mint: a reconfigurable mobile multi-hop wireless network testbed. Ph.D. thesis, State University of New York at Stony Brook, Stony Brook (2007)

    Google Scholar 

  21. Krishnan, R., Raniwala, A., Chiueh, T.C.: Design of a channel characteristics-aware routing protocol. In: Proceedings of the 27th Conference on Computer Communications (INFOCOM 2008). IEEE (2008). https://doi.org/10.1109/infocom.2008.314

  22. Krishnan, R., Raniwala, A., Chiueh, T.C.: An empirical comparison of throughput-maximizing wireless mesh routing protocols. In: Proceedings of the 4th Annual International Conference in Wireless Internet (WICON 2008), pp. 40:1–40:9. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering). ICST, Brussels (2008)

    Google Scholar 

  23. Raniwala, A., Chiueh, T.C.: Evaluation of a wireless enterprise backbone network architecture. In: Proceedings of the 12th Annual IEEE Symposium on High Performance Interconnects (HOTI 2004), 22–24 August, pp. 98–104. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  24. Raniwala, A., Chiueh, T.C.: Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005), vol. 3, pp. 2223–2234 (2005). https://doi.org/10.1109/infcom.2005.1498497

  25. Raniwala, A., De, P., Sharma, S., Krishnan, R., Chiueh, T.C.: End-to-end flow fairness over IEEE based wireless mesh networks. In: Proceedings of the 26th Annual IEEE International Conference on Computer Communications (INFOCOM 2007). IEEE (2007). https://doi.org/10.1109/infcom.2007.281

  26. Raniwala, A., Gopalan, K., Chiueh, T.C.: Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 8(2), 50–65 (2004). https://doi.org/10.1145/997122.997130

    Article  Google Scholar 

  27. De, P., Raniwala, A., Sharma, S., Chiueh, T.C.: MiNT: a miniaturized network testbed for mobile wireless research. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2005), vol. 4, pp. 2731–2742 (2005). https://doi.org/10.1109/infcom.2005.1498556

  28. De, P., Raniwala, A., Sharma, S., Chiueh, T.C.: Design considerations for a multihop wireless network testbed. IEEE Commun. Mag. 43(10), 102–109 (2005). https://doi.org/10.1109/mcom.2005.1522132

    Article  Google Scholar 

  29. De, P., et al.: MiNT-m: an autonomous mobile wireless experimentation platform. In: Proceedings of the 4th International Conference on Mobile Systems, Applications and Services (MobiSys 2006), pp. 124–137. ACM, New York (2006). https://doi.org/10.1145/1134680.1134694

  30. Mitchell, C., Munishwar, V., Singh, S., Wang, X., Gopalan, K., Abu-Ghazaleh, N.: Testbed design and localization in MiNT-2: a miniaturized robotic platform for wireless protocol development and emulation. In: First International Communication Systems and Networks and Workshops (COMSNETS 2009), pp. 1–10 (2009). https://doi.org/10.1109/comsnets.2009.4808866

  31. Munishwar, V., Singh, S., Wang, X., Mitchell, C., Gopalan, K., Abu-Ghazaleh, N.: On the accuracy of RFID-based localization in a mobile wireless network testbed. In: IEEE International Conference on Pervasive Computing and Communications (PerCom 2009), pp. 1–6 (2009). https://doi.org/10.1109/percom.2009.4912872

  32. Munishwar, V., Singh, S., Mitchell, C., Wang, X., Gopalan, K., Abu-Ghazaleh, N.: RFID based localization for a miniaturized robotic platform for wireless protocols evaluation. In: Proceedings of the 7th IEEE International Conference on Pervasive Computing and Communications (PerCom 2009), pp. 1–3 (2009). https://doi.org/10.1109/percom.2009.4912794

  33. Paine, N.A.: Design and development of a modular robot for research use. Master thesis, The University of Texas at Austin, USA (2010)

    Google Scholar 

  34. Stovall, D., Paine, N., Petz, A., Enderle, J., Julien, C., Vishwanath, S.: Pharos: an application-oriented testbed for heterogeneous wireless networking environments. Technical report TR- UTEDGE-2009-006, The University of Texas at Austin (2009)

    Google Scholar 

  35. Petz, A., Jun, T., Roy, N., Fok, C.-L., Julien, C.: Passive network-awareness for dynamic resource-constrained networks. In: Felber, P., Rouvoy, R. (eds.) DAIS 2011. LNCS, vol. 6723, pp. 106–121. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21387-8_9

    Chapter  Google Scholar 

  36. Petz, A., Fok, C.L., Julien, C.: Experiences using a miniature vehicular network testbed. In: Proceedings of the Ninth ACM International Workshop on Vehicular Inter-networking, Systems, and Applications (VANET 2012), pp. 21–26. ACM, New York (2012). https://doi.org/10.1145/2307888.2307894

  37. Petz, A., Bednarczyk, A., Paine, N., Stovall, D., Julien, C.: MaDMAN: a middleware for delay-tolerant mobile ad-hoc networks. Technical report TR-UTEDGE-2010-011, University of Texas at Austin (2010)

    Google Scholar 

  38. Petz, A., Fok, C.L., Julien, C., Walker, B., Ardi, C.: Network coded routing in delay tolerant networks: an experience report. In: Proceedings of the 3rd Extreme Conference on Communication: The Amazon Expedition (ExtremeCom 2011), pp. 4:1–4:6. ACM, New York (2011). https://doi.org/10.1145/2414393.2414397

  39. Petz, A.: The Click Convergence Layer: Putting a Modular Router Under DTN2 (2010)

    Google Scholar 

  40. Fok, C., Petz, A., Stovall, D., Paine, N., Julien, C., Vishwanath, S.: Pharos: a testbed for mobile cyber-physical systems. Technical report TR-ARiSE-2011-001, University of Texas at Austin (2011)

    Google Scholar 

  41. Fok, C.L., et al.: A platform for evaluating autonomous intersection management policies. In: Proceedings of the IEEE/ACM Third International Conference on Cyber-Physical Systems (ICCPS 2012), pp. 87–96 (2012). https://doi.org/10.1109/iccps.2012.17

  42. Killijian, M.O., Roy, M., Severac, G.: ARUM: a cooperative middleware and an experimentation platform for mobile systems. In: Proceedings of the IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2010), pp. 442–449 (2010). https://doi.org/10.1109/wimob.2010.5645030

  43. Killijian, M.O., Roy, M., Severac, G.: The ARUM experimentation platform: an open tool to evaluate mobile systems applications. In: Rückert, U., Joaquin, S., Felix, W. (eds.) Advances in Autonomous Mini Robots, pp. 221–234. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27482-4_22

    Chapter  Google Scholar 

  44. Killijian, M.-O., Roy, M.: Data backup for mobile nodes: a cooperative middleware and an experimentation platform. In: Casimiro, A., de Lemos, R., Gacek, C. (eds.) WADS 2009. LNCS, vol. 6420, pp. 53–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17245-8_3

    Chapter  Google Scholar 

  45. Killijian, M.O., Powell, D., Roy, M., Sévérac, G.: Experimental evaluation of ubiquitous systems: why and how to reduce WiFi communication range. In: Proceedings of the 2nd International Conference on Distributed Event-Based Systems (DEBS 2008) (2008)

    Google Scholar 

  46. Federation for Future Internet Research and Experimentation (fed4fire): w-iLab.t - Fed4Fire (2015). http://www.fed4fire.eu/w-ilab-t/. Accessed 30 Nov 2015

  47. Becue, P., Jooris, B., Sercu, V., Bouckaert, S., Moerman, I., Demeester, P.: Remote control of robots for setting up mobility scenarios during wireless experiments in the IBBT w-iLab.t. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 425–426. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35576-9_51

    Chapter  Google Scholar 

  48. Moerman, I., et al.: Toolkit for wireless mobility testbeds. Deliverable report Deliverable D3.5, OpenLab (2014)

    Google Scholar 

  49. Bouckaert, S., Jooris, B., Becue, P., Moerman, I., Demeester, P.: The IBBT w-iLab.t: a large-scale generic experimentation facility for heterogeneous wireless networks. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 7–8. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35576-9_4

    Chapter  Google Scholar 

  50. Abdelhadi, A., et al.: Position estimation of robotic mobile nodes in wireless testbed using GENI. In: Proceedings of the 2016 Annual IEEE Systems Conference (SysCon 2016), pp. 1–6. IEEE (2016)

    Google Scholar 

  51. Van Haute, T., et al.: Comparability of RF-based indoor localization solutions in heterogeneous environments: an experimental study. Int. J. Ad Hoc Ubiquit. Comput. 23(1–2), 92–114 (2015)

    Google Scholar 

  52. Bouckaert, S., Vandenberghe, W., Jooris, B., Moerman, I., Demeester, P.: The w-iLab.t testbed. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 145–154. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17851-1_11

    Chapter  Google Scholar 

  53. Neumann, A., López, E., Navarro, L.: Evaluation of mesh routing protocols for wireless community networks. Comput. Netw. Part 2 93, 308–323 (2015). https://doi.org/10.1016/j.comnet.2015.07.018

    Article  Google Scholar 

  54. Viñas, R.B.: Evaluation of dynamic routing protocols on realistic wireless topologies. Ph.D. thesis, Autonomous University of Barcelona, Spain (2012)

    Google Scholar 

  55. Neumann, A., Lopez, E., Navarro, L.: An evaluation of BMX6 for community wireless networks. In: Proceedings of the 8th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2012), pp. 651–658 (2012). https://doi.org/10.1109/wimob.2012.6379145

  56. Rensfelt, O., Hermans, F., Gunningberg, P., Larzon, L.Å., Björnemo, E.: Repeatable experiments with mobile nodes in a relocatable WSN testbed. Comput. J. 54(12), 1973–1986 (2011). https://doi.org/10.1093/comjnl/bxr052

    Article  Google Scholar 

  57. Rensfelt, O., Ferm, F.H.C., Gunningberg, P., Larzon, L.Ã….: Sensei-UU: a nomadic sensor network testbed supporting mobile nodes. Technical report 2009-025, Department of Information Technology, Uppsala University (2009)

    Google Scholar 

  58. Rensfelt, O., Hermans, F., Ferm, C., Larzon, L.A., Gunningberg, P.: Sensei - a flexible testbed for heterogeneous wireless sensor networks. In: Proceedings of the 5th International Conference on Testbeds and Research Infrastructures for the Development of Networks Communities and Workshops (TridentCom 2009), pp. 1–2 (2009). https://doi.org/10.1109/tridentcom.2009.4976218

  59. Rensfelt, O., Hermans, F., Larzon, L.Å., Gunningberg, P.: Sensei-UU: a relocatable sensor network testbed. In: Proceedings of the Fifth ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization (WiNTECH 2010), pp. 63–70. ACM, New York (2010). https://doi.org/10.1145/1860079.1860091

  60. Hermans, F., Rensfelt, O., Gunningberg, P., Larzon, L.-Å., Ngai, E.: Sensei-UU — a relocatable WSN testbed supporting repeatable node mobility. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.) TridentCom 2010. LNICST, vol. 46, pp. 612–614. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17851-1_57

    Chapter  Google Scholar 

  61. Arora, A., Ertin, E., Ramnath, R., Nesterenko, M., Leal, W.: Kansei: a high-fidelity sensing testbed. IEEE Internet Comput. 10(2), 35–47 (2006). https://doi.org/10.1109/MIC.2006.37

    Article  Google Scholar 

  62. Ertin, E., et al.: Kansei: a testbed for sensing at scale. In: The Fifth International Conference on Information Processing in Sensor Networks, IPSN 2006, pp. 399–406 (2006). https://doi.org/10.1109/ipsn.2006.243879

  63. Giordano, V., Ballal, P., Lewis, F., Turchiano, B., Zhang, J.B.: Supervisory control of mobile sensor networks: math formulation, simulation, and implementation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36(4), 806–819 (2006). https://doi.org/10.1109/TSMCB.2006.870647

    Article  Google Scholar 

  64. Jayasingha, D., Jayawardhane, N., Karunanayake, P., Karunarathne, G., Dias, D.: Wireless sensor network testbed for mobile data communication. In: Proceedings of the 4th International Conference on Information and Automation for Sustainability (ICIAFS 2008), pp. 97–103 (2008). https://doi.org/10.1109/iciafs.2008.4783994

  65. Forster, A., et al.: MOTEL: towards flexible mobile wireless sensor network testbeds. In: Proceedings of the 8th European Conference on Wireless Sensor Networks (EWSN 2011), Bonn, Germany, February 2011

    Google Scholar 

  66. Jiménez-González, A., Martínez-de Dios, J., Ollero, A.: An integrated testbed for heterogeneous mobile robots and other cooperating objects. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), pp. 3327–3332 (2010). https://doi.org/10.1109/iros.2010.5650665

  67. Jimenez-Gonzalez, A., Martinez-De Dios, J.R., Ollero, A.: An integrated testbed for cooperative perception with heterogeneous mobile and static sensors. Sensors 11(12), 11516–11543 (2011). https://doi.org/10.3390/s111211516

    Article  Google Scholar 

  68. Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A.: Introduction. In: Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A. (eds.) A Remote Integrated Testbed for Cooperating Objects. SpringerBriefs in Electrical and Computer Engineering, pp. 1–4. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01372-5_1

    Chapter  Google Scholar 

  69. Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A.: CONET integrated testbed architecture. In: Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A. (eds.) A Remote Integrated Testbed for Cooperating Objects. SpringerBriefs in Electrical and Computer Engineering, pp. 23–39. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01372-5_3

    Chapter  Google Scholar 

  70. Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A.: CONET integrated testbed experiments. In: Martinez-de Dios, J.R., Jimenez-Gonzalez, A., de San Bernabe, A., Ollero, A. (eds.) A Remote Integrated Testbed for Cooperating Objects, pp. 59–73. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01372-5_5

    Chapter  Google Scholar 

  71. Vingelmann, P., Pedersen, M., Heide, J., Zhang, Q., Fitzek, F.: Data dissemination in the wild: a testbed for high-mobility MANETs. In: Proceedings of the 2012 IEEE International Conference on Communications (ICC 2012), pp. 291–296 (2012). https://doi.org/10.1109/icc.2012.6364123

  72. Reich, J., Misra, V., Rubenstein, D.: Roomba MADNeT: a mobile ad-hoc delay tolerant network testbed. ACM SIGMOBILE Mob. Comput. Commun. Rev. 12(1), 68–70 (2008). https://doi.org/10.1145/1374512.1374536

    Article  Google Scholar 

  73. Vingelmann, P., Heide, J., Pedersen, M.V., Zhang, Q., Fitzek, F.H.P.: All-to-all data dissemination with network coding in dynamic MANETs. Comput. Netw. 74(Part B), 34–47 (2014). https://doi.org/10.1016/j.comnet.2014.06.018

    Article  Google Scholar 

  74. Reich, J., Misra, V., Rubenstein, D.S., Zussman, G.: Spreadable connected autonomic networks (SCAN). Technical report CUCS-016-08 (2008)

    Google Scholar 

  75. Reich, J., Misra, V., Rubenstein, D., Zussman, G.: Connectivity maintenance in mobile wireless networks via constrained mobility. IEEE J. Sel. Areas Commun. 30(5), 935–950 (2012). https://doi.org/10.1109/JSAC.2012.120609

    Article  Google Scholar 

  76. Dahlberg, T.A., Nasipuri, A., Taylor, C.: Explorebots: a mobile network experimentation testbed. In: Proceedings of the 2005 ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network Design and Analysis (E-WIND 2005), pp. 76–81. ACM, New York (2005). https://doi.org/10.1145/1080148.108015

  77. Bromage, S., et al.: SCORPION: a heterogeneous wireless networking testbed. ACM SIGMOBILE Mob. Comput. Commun. Rev. 13(1), 65–68 (2009). https://doi.org/10.1145/1558590.1558604

    Article  Google Scholar 

  78. Förster, A., Förster, A., Garg, K., Puccinelli, D., Giordano, S., Gambardella, L.M.: MOTEL-a mobile robotic-assisted wireless sensor networks testbed. In: Wireless Integration of Sensor Networks in Hybrid Architectures, p. 13 (2012)

    Google Scholar 

  79. Foerster, A., Foerster, A., Garg, K., Giordano, S., Gambardella, L.M.: MOTEL: mobility enabled wireless sensor network testbed. Adhoc Sensor Wirel. Netw. 24(3) (2015)

    Google Scholar 

  80. Janansefat, S., Senturk, I., Akkaya, K., Gloff, M.: A mobile sensor network testbed using irobots. In: 37th Annual IEEE Conference on Local Computer Networks (LCN 2012), Clearwater, FL, 22–25 October 2012 (2012)

    Google Scholar 

  81. Janansefat, S., Akkaya, K., Senturk, I., Gloff, M.: Rethinking connectivity restoration in WSNs using feedback from a low-cost mobile sensor network testbed. In: IEEE 38th Conference on Local Computer Networks Workshops (LCN 2013), pp. 108–115 (2013). https://doi.org/10.1109/lcnw.2013.6758506

  82. Senturk, I., Akkaya, K., Janansefat, S.: Towards realistic connectivity restoration in partitioned mobile sensor networks. Int. J. Commun. Syst. 29(2), 230–250 (2016). https://doi.org/10.1002/dac.2819

    Article  Google Scholar 

  83. Tonneau, A.S., Mitton, N., Vandaele, J.: How to choose an experimentation platform for wireless sensor networks? A survey on static and mobile wireless sensor network experimentation facilities. Ad Hoc Netw. 30, 115–127 (2015). https://doi.org/10.1016/j.adhoc.2015.03.002

    Article  Google Scholar 

  84. Tonneau, A.S., Mitton, N., Vandaele, J.: A Survey on (mobile) wireless sensor network experimentation testbeds. In: Proceedings of the 2014 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2014), pp. 263–268 (2014). https://doi.org/10.1109/dcoss.2014.41

  85. Fleury, E., Mitton, N., Noel, T., Adjih, C.: FIT IoT-LAB: the largest IoT open experimental testbed. ERCIM News 101(14) (2015)

    Google Scholar 

  86. Burin des Rosiers, C., et al.: SensLAB. In: Korakis, T., Li, H., Tran-Gia, P., Park, H.-S. (eds.) TridentCom 2011. LNICST, vol. 90, pp. 239–254. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29273-6_19

    Chapter  Google Scholar 

  87. Rosiers, C.B.D., et al.: SensLAB Very Large Scale Open Wireless Sensor Network Testbed (2011)

    Google Scholar 

  88. Quilez, R., Zeeman, A., Mitton, N., Vandaele, J.: Docking autonomous robots in passive docks with Infrared sensors and QR codes. In: Proceedings of the 10th International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TRIDENTCOM 2015), pp. 113–122 (2015)

    Google Scholar 

  89. IoT-LAB Team: IoT-LAB Mobile Robot (2015). https://www.iot-lab.info/robots/. Accessed 30 Nov 2015

  90. Choumas, K., et al.: Optimization driven multi-hop network design and experimentation: the approach of the FP7 project OPNEX. IEEE Commun. Mag. 50(6), 122–130 (2012). https://doi.org/10.1109/MCOM.2012.6211496

    Article  Google Scholar 

  91. Giatsios, D., Apostolaras, A., Korakis, T., Tassiulas, L.: Methodology and tools for measurements on wireless testbeds: the NITOS approach. In: Fàbrega, L., Vilà, P., Careglio, D., Papadimitriou, D. (eds.) Measurement Methodology and Tools. LNCS, vol. 7586, pp. 61–80. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41296-7_5

    Chapter  Google Scholar 

  92. Keranidis, S., et al.: Experimentation on end-to-end performance aware algorithms in the federated en- vironment of the heterogeneous PlanetLab and NITOS testbeds. Comput. Netw. 63, 48–67 (2014). https://doi.org/10.1016/j.bjp.2013.12.026

    Article  Google Scholar 

  93. Keranidis, S., Kazdaridis, G., Passas, V., Korakis, T., Koutsopoulos, I., Tassiulas, L.: NITOS energy monitoring framework: real time power monitoring in experimental wireless network deployments. SIGMOBILE Mob. Comput. Commun. Rev. 18(1), 64–74 (2014). https://doi.org/10.1145/2581555.2581566

    Article  Google Scholar 

  94. Pechlivanidou, K., Katsalis, K., Igoumenos, I., Katsaros, D., Korakis, T., Tassiulas, L.: NITOS testbed: a cloud based wireless experimentation facility. In: Proceedings of the 26th International Teletraffic Congress (ITC 2014), pp. 1–6 (2014). https://doi.org/10.1109/itc.2014.6932976

  95. Niavis, H., Kazdaridis, G., Korakis, T., Tassiulas, L.: Enabling sensing and mobility on wireless testbeds. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 421–424. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35576-9_50

    Chapter  Google Scholar 

  96. Muchtar, F., Abdullah, A.H., Latiff, M.S.A., Hassan, S., Wahab, M.H.A., Abdul-Salaam, G.: A technical review of MANET testbed using mobile robot technology. In: Journal of Physics: Conference Series (2018, manuscript submitted for publication)

    Google Scholar 

  97. Muchtar, F., Abdullah, A.H., Arshad, M.M., Wahab, M.H.A., Ahmmad, S.N.Z., Abdul-Salaam, G.: A critical review of MANET testbed using mobile robot technology. In: Journal of Physics: Conference Series (2018, manuscript submitted for publication)

    Google Scholar 

  98. Muchtar, F., Abdullah, A.H., Wahab, M.H.A., Ambar, R., Hanafi, H.F., Ahmmad, S.N.Z.: Mobile ad hoc network testbed using mobile robot technology. In: Journal of Physics: Conference Series (2018, manuscript submitted for publication)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farkhana Muchtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muchtar, F., Abdullah, A.H., Ahmmad, S.N.Z., Kumar, Y. (2019). Mobility in MANET Using Robot: A Review. In: Singh, P., Paprzycki, M., Bhargava, B., Chhabra, J., Kaushal, N., Kumar, Y. (eds) Futuristic Trends in Network and Communication Technologies. FTNCT 2018. Communications in Computer and Information Science, vol 958. Springer, Singapore. https://doi.org/10.1007/978-981-13-3804-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3804-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3803-8

  • Online ISBN: 978-981-13-3804-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics