Malliavin Calculus

  • Hiroshi Kunita
Part of the Probability Theory and Stochastic Modelling book series (PTSM, volume 92)


We will discuss the Malliavin calculus on the Wiener space and on the space of Poisson random measures, called the Poisson space. There are extensive works on the Malliavin calculus on the Wiener space. Also, there are some interesting works on the Malliavin calculus on the Poisson space. These two types of calculus have often been discussed separately, since the Wiener space and that of the Poisson space are quite different. Even so, we are interested in the Malliavin calculus on the product of these two spaces; we want to develop these two theories in a compatible way.

In Sects. 5.1, 5.2, and 5.3, we study the Malliavin calculus on the Wiener space. We define ‘H-derivative’ operator Dt and its adjoint δ (Skorohod integral by Wiener process) on the Wiener space. Then, after introducing Sobolev norms for Wiener functionals, we get a useful estimate of the adjoint operator with respect to Sobolev norms (Theorem 5.2.1). In Sect. 5.3, we give Malliavin’s criterion for which the law of a given Wiener functional has a smooth density. It will be stated in terms of the Malliavin covariance.

In Sects. 5.4, 5.5, 5.6, and 5.7, we study the Malliavin calculus on the space of Poisson random measure. Difference operator \({\tilde D}_u\) and its adjoint \(\tilde \delta \) (Skorohod integral by Poisson random measure) are defined for Poisson functionals following Picard [92]. We will define a family of Sobolev norms conditioned to a family of star-shaped neighborhoods {A(ρ), 0 < ρ < 1}. Then a criterion for the smooth density of the law of a Poisson functional will be given using this family of Sobolev norms.

In Sects. 5.8, 5.9, and 5.10, we study the Malliavin calculus on the product of the Wiener space and Poisson space. Sobolev norms for Wiener–Poisson functionals are studied in Sect. 5.9. In Sect. 5.10, we study criteria for the smooth density. Finally in Sect. 5.11, we discuss the composition of a ‘nondegenerate’ Wiener–Poisson functional and Schwartz’s distribution.

Results of this chapter will be applied in the next chapter for getting the fundamental solution of heat equations discussed in Chap.  4.


  1. 7.
    Bichteler, K., Gravereau, J.B., Jacod, J.: Malliavin Calculus for Processes with Jumps. Stochastic Monographs, vol. 2. Gordon and Breach, London (1987)Google Scholar
  2. 10.
    Bismut, J.M.: Calcul des variations stochastique et processus de sauts. Z. Wahrsch. verw. Gebiete 63, 147–235 (1983)MathSciNetCrossRefGoogle Scholar
  3. 15.
    Cameron, R.H.: The first variation of an indefinite Wiener integral. Proc. Am. Math. Soc. 2, 914–924 (1951)MathSciNetCrossRefGoogle Scholar
  4. 16.
    Cameron, R.H., Martin, W.T.: Transformations of Wiener integrals under translations. Ann. Math. 45, 386–396 (1944)MathSciNetCrossRefGoogle Scholar
  5. 23.
    Driver, B.K.: Curved Wiener space analysis. In: Rao, M.M. (ed.) Real and Stochastic Analysis. Birkhauser, Boston (2004)Google Scholar
  6. 33.
    Girsanov, L.V.: On transforming a class of stochastic processes by absolutely continuous substitution of measures. Theor. Verojatnost. i Primenen. 5, 314–330 (1960)MathSciNetGoogle Scholar
  7. 34.
    Gross, L.: Abstract Wiener spaces. In: Proceedings of Fifth Berkeley Symposium Mathematical Statistics and Probability II., Part 1, pp. 31–42. University of California Press, Berkeley (1967)Google Scholar
  8. 35.
    Gross, L.: Potential theory in Hilbert space. J. Funct. Anal. 1, 123–181 (1967)CrossRefGoogle Scholar
  9. 37.
    Hayashi, M., Ishikawa, Y.: Composition with distributions of Wiener-Poisson variables and its asymptotic expansion. Math. Nachr. 285, 619–658 (2012)MathSciNetCrossRefGoogle Scholar
  10. 40.
    Ikeda, N., Watanabe, S.: An introduction to Malliavin’s calculus. In: Itô, K. (ed.) Stochastic Analysis, pp. 1–52. Kinokuniya, Tokyo (1982)Google Scholar
  11. 41.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North Holland, Amsterdam (1989)zbMATHGoogle Scholar
  12. 45.
    Ishikawa, Y., Kunita, H.: Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps. Stoch. Process. Appl. 116, 1743–1769 (2006)MathSciNetCrossRefGoogle Scholar
  13. 46.
    Ishikawa, Y., Kunita, H., Tsuchiya, M.: Smooth density and its short time estimate for jump process determined by SDE. SPA 128, 3181–3219 (2018)MathSciNetzbMATHGoogle Scholar
  14. 69.
    Kusuoka, S., Stroock, D.W.: Application of Malliavin calculus, Part I. In: Itô, K. (ed.) Stochastic Analysis. Proceedings Taniguchi International Symposium Katata and Kyoto, 1982, pp. 271–306. Kinokuniya, Tokyo (1984)Google Scholar
  15. 70.
    Kusuoka, S., Stroock, D.W.: Application of Malliavin calculus, Part II. J. Fac. Sci. Tokyo Univ. Tokyo Sect. IA Math. 32, 1–76 (1985)MathSciNetzbMATHGoogle Scholar
  16. 74.
    Léandre, R.: Regularities de processus de sauts degeneres (II). Ann. Inst. H. Poincare Probab. Stat. 24, 209–236 (1988)zbMATHGoogle Scholar
  17. 77.
    Malliavin, P.: Stochastic calculus of variation and hypo-elliptic operator. In: Itô, K. (ed.) Proceedings of International Symposium SDE, Kyoto, 1976. Kinokuniya, Tokyo (1978)Google Scholar
  18. 80.
    Malliavin, P., Thalmaier, A.: Stochastic Calculus of Variations in Mathematical Finance. Springer Finance, Berlin/Heidelberg/New York (2006)Google Scholar
  19. 82.
    Maruyama, G.: Note on Wiener functionals. Kodao Math. Sem. Rep. 2, 41–44 (1950)CrossRefGoogle Scholar
  20. 83.
    Matsumoto, H., Taniguchi, S.: Stochastic Analysis. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  21. 88.
    Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  22. 89.
    Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields 89, 407–422 (1991)CrossRefGoogle Scholar
  23. 91.
    Picard, J.: Formules de dualité sur l’espace de Poisson. Ann. Inst. Henri Poincaré, 32, 509–548 (1996)MathSciNetzbMATHGoogle Scholar
  24. 92.
    Picard, J.: On the existence of smooth densities for jump processes. PTRF 105, 481–511 (1996)MathSciNetzbMATHGoogle Scholar
  25. 93.
    Picard, J.: Density in small time at accessible points for jump processes. SPA 67, 251–279 (1997)MathSciNetzbMATHGoogle Scholar
  26. 95.
    Picard, J., Savona, C.: Smoothness of the law of manifold-valued Markov process with jumps. Bernoulli 19(5A), 1880–1919 (2013)MathSciNetCrossRefGoogle Scholar
  27. 100.
    Shigekawa, I.: Derivatives of Wiener functionals and absolute continuity of the induced measures. J. Math. Kyoto Univ. 208, 263–289 (1980)MathSciNetCrossRefGoogle Scholar
  28. 101.
    Shigekawa, I.: de Rham-Hodge-Kodaira’s decomposition on an abstract Wiener space. J. Math. Kyoto Univ. 20, 263–289 (1980)Google Scholar
  29. 102.
    Shigekawa, I.: Stochastic Analysis. American Mathematical Society, Providence (2004)CrossRefGoogle Scholar
  30. 105.
    Stroock, D.W.: The Malliavin calcuulus, the functional analytic approach. J. Funct. Anal. 44, 212–257 (1981)MathSciNetCrossRefGoogle Scholar
  31. 116.
    Watanabe, S.: Stochastic Differential Equations and Malliavin Calculus. Tata Institute of Fundamental Research, Bombay (1984)Google Scholar
  32. 117.
    Watanabe, S.: Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels. Ann. Probab. 15, 1–39 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hiroshi Kunita
    • 1
  1. 1.Kyushu University (emeritus)FukuokaJapan

Personalised recommendations