Performance Analysis of Nanoparticles in Healthcare and Biomedical Applications

  • T. RubaEmail author
  • R. Tamilselvi
  • M. Parisa Beham
  • K. Muthukumaran
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 65)


Applications of nanoparticles in health care have recently turned into the most emerging research platforms, since the nanomaterials exhibit novel and superior properties than the conventional materials, which make it possible for new medical applications. Extensive biomedical applications are explored by the nanoparticles domains which are principally either purely organic or inorganic materials. Inspired by the unique characteristics, novelty, and wide applications of nanoparticles, this work provides a comprehensive survey on performance analysis of nanomaterials in biomedical applications. Analysis of new results, techniques, and characteristics of nanomaterials mainly in the area of biomedicine are well described.


Biomedical applications Health Care Nanomaterials Nanoparticles Nanostructures Nanosensitizers Nanoprotectors 


  1. 1.
    Leung JP, Wu S, Chou KC, Signorell R (2013) Investigation of sub-100 nm gold nanoparticles for laser-induced thermotherapy of cancer. J Nanomater 3:86–106CrossRefGoogle Scholar
  2. 2.
    Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103(2):317–324CrossRefGoogle Scholar
  3. 3.
    Kumari P, Majewski P (2013) Adsorption of albumin on silica surfaces modified by silver and copper nanoparticles, J Nanomater 2013(839016):7 pagesCrossRefGoogle Scholar
  4. 4.
    Zamperini CA, André RS, Longo VM, Mima EG, Vergani CE, Machado AL, Varela JA, Longo1 E (2013) Antifungal applications of ag-decorated hydroxyapatite nanoparticles. J Nanomater 2013(174398):9 pagesGoogle Scholar
  5. 5.
    Hu Q, Wujcik EK, Kelarakis A, Cyriac J, Gong X (2017) Carbon-based nanomaterials as novel nanosensors. J Nanomater 2017(3643517):2 pagesGoogle Scholar
  6. 6.
    Brann T, Patel D, Chauhan R, James KT, Bates PJ, Malik MT, Keynton RS, Toole MG (2016) Gold nanoplates as cancer-targeted photothermal actuators for drug delivery and triggered release. J Nanomater (2036029):11 pagesGoogle Scholar
  7. 7.
    Katas H, Mohd Amin MCI, Moideen N, Ng LY, Adhwa Megat Baharudin PA (2017) Cell growth inhibition effect of DsiRNA vectorised by pectin-coated chitosan-graphene oxide nanocomposites as potential therapy for colon cancer. J Nanomater (4298218):12 pagesGoogle Scholar
  8. 8.
    Lawaczeck R, Menzel M, Pietsch H (2004) Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl Organomet Chem 18(10):506–513CrossRefGoogle Scholar
  9. 9.
    Parkes LM, Hodgson R, Lu LT et al (2008) Cobalt nanoparticles as a novel magnetic resonance contrast agent—relaxes at 1.5 and 3 Tesla. Contrast Media Mol Imaging 3(4):150–156CrossRefGoogle Scholar
  10. 10.
    Kim T, Cho E-J, Chae Y, Kim M, Oh A, Ji J (2011) Urchin-shaped manganese oxide nanoparticles as pH-responsive activatable T1 contrast agents for magnetic resonance imaging. Angew Chem Int Ed 50(45):10589–10593CrossRefGoogle Scholar
  11. 11.
    Zhou Z, Lu Z-R (2013) Gadolinium-based contrast agents for MR cancer imaging. Wiley Interdiscip Rev Nano Med Nanobiotechnolgy 5(1):1–18CrossRefGoogle Scholar
  12. 12.
    Li C, Li X, Hou Z et al (2013) Multifunctional NaYF4: Yb/Er/Gd nanocrystal decorated SiO2 nanotubes for anti-cancer drug delivery and dual modal imaging. RSC Adv 3:8517–8526CrossRefGoogle Scholar
  13. 13.
    Rosa L, Blackledge J, Boretti A (2017) Nano-magnetic resonance imaging (nano-MRI) gives personalized medicine a new perspective. Biomedicines 5(1) (Franc B (ed.))CrossRefGoogle Scholar
  14. 14.
    Das S, Mitra S, Paul Khurana SM, Debnath N (2013) Nanomaterials for biomedical applications. Front Life Sci 7(3–4):90–98CrossRefGoogle Scholar
  15. 15.
    Chandra P, Singh J, Singh A, Srivastava A, Goyal RN, Shim YB (2013) Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. J NanopartGoogle Scholar
  16. 16.
    Meidanchi A, Akhavan O, Khoei S, Shokri AA, Hajikarimi Z, Khansar N (2015) ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater Sci Eng 46:394–399 (Elsevier)CrossRefGoogle Scholar
  17. 17.
    Werner ME, Cummings BS ND, et al (2013) Preclinical evaluation of genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. Int J f Radiat Oncol Biol, Phys 86(3):463–468 (Elsevier)CrossRefGoogle Scholar
  18. 18.
    Popov AL, Zaichkina SI, Popova NR, Rozanova OM, Romanchenko SP, Ivanova OS, Smirnov AA, Mironova EV, Selezneva II, Ivanov VK (2016) Radioprotective effects of ultra-small citrate-stabilized cerium oxide nanoparticles in vitro and in vivo. RSC Adv 6(108):106141–106149CrossRefGoogle Scholar
  19. 19.
    Feliciano CP, Tsuboi K, Suzuki K, Kimura H, Nagasaki Y (2017) Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 129:68–82 (Elsevier)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • T. Ruba
    • 1
    Email author
  • R. Tamilselvi
    • 1
  • M. Parisa Beham
    • 1
  • K. Muthukumaran
    • 1
  1. 1.Department of ECESethu Institute of TechnologyVirudhunagarIndia

Personalised recommendations