Skip to main content

Abstract

Halophytes are the flowering plants native to saline habitats. These habitats contain high salt, heavy metals and other toxic anthropogenic agents. To complete their life cycle in such harsh conditions, halophytes have developed different strategies like development of succulence, compartmentalization of toxic ions, synthesis of osmolytes, increase in activity of antioxidants and synthesis of compatible solutes. Halophytes have significant applied interests towards various agricultural and non-agricultural purposes besides for maintenance of ecological balance. Important bioactive metabolites can be derived from halophytic plant species for commercial value. In addition, halophytes can be utilized as alternative plants as they could be cultivated for food, fodder/forage, fuel and medicinal crops on saline lands with the help of salty water irrigation. Apart from tolerance, halophytes can be utilized for environmental cleanup. Many halophytes are hyper accumulators of different heavy metals and salt. In this chapter, we discussed prospective use of halophytes for their economic importance as well their potential implications for environmental cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35:1818–1822

    Article  CAS  Google Scholar 

  • Adolf VI, Jacobsen SE, Shabala S (2013) Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot 92:43–54. https://doi.org/10.1016/j.envexpbot.2012.07.004

    Article  CAS  Google Scholar 

  • Aronson JA (1985) HALOPH: a data base of salt tolerant plants of the world. Arid Land Studies. University of Arizona, Tucson

    Google Scholar 

  • Barreira L, Resek E, Rodrigues MJ, Rocha MI, Pereira H, Bandarra N, da Silva MM, Varela J, Custodio L (2017) Halophytes: gourmet food with nutritional health benefits. J Food Compos Anal. https://doi.org/10.1016/j.jfca.2017.02.003

    Article  CAS  Google Scholar 

  • Barrett-Lennard EG, Setter TL (2010) Developing saline agriculture: moving from traits and genes to systems. Funct Plant Biol 37:iii–iiv

    Article  Google Scholar 

  • Ben Amor N, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126:446–457. https://doi.org/10.1111/j.1399-3054.2005.00620.x

    Article  CAS  Google Scholar 

  • Ben Hamed K, Ben Youssef N, Ranieri A, Zarrouk M, Abdelly C (2005) Changes in content and fatty acid profiles of total lipids and sulfolipids in the halophyte Crithmum maritimum under salt stress. J Plant Physiol 162:599–602

    Article  CAS  Google Scholar 

  • Bertin RL, Gonzaga LV, Borges GSC, Azevedo MSA, Maltez HF, Heller M, Micke GA, Ballod LBB, Fett R (2016) Nutrient composition and, identification/quantification of major phenolic compounds in Sarcocornia ambigua (Amaranthaceae) using HPLC-ESI-MS/MS. Food Res Int 55:404–411. https://doi.org/10.1016/j.jfca.2015.12.009

    Article  CAS  Google Scholar 

  • Boer B (2006) Halophyte research and development: what needs to be done next. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Berlin/New York, pp 397–399

    Chapter  Google Scholar 

  • Boulaaba M, Mkadmini K, Soninkhishig T, Han J, Smaoui A, Kawada K, Ksouri R, Isoda H, Abdelly C (2013) In vitro antiproliferative effect of Arthrocnemum indicum extracts on Caco-2 Cancer cells through cell cycle control and related phenol LC-TOF-MS identification. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/529375

    Article  Google Scholar 

  • Buhmann A, Papenbrock J (2013) Biofiltering of aquaculture effluents by halophytic plants: basic principles, current uses and future perspectives. Environ Exp Bot 92:122–133

    Google Scholar 

  • Cassaniti C, Romano D (2011) The use of halophytes for Mediterranean landscaping. Proceedings of the European COST Action FA901. Eur J Plant Sci Biotechnol 5:58–63

    Google Scholar 

  • Cassaniti C, Romano D, Hop MECM, Flowers TJ (2013) Growing floricultural crops with brackish water. Environ Exp Bot 92:165–175

    CAS  Google Scholar 

  • Chaudhuri AB, Choudhury A (1994) Mangroves of the Sundarbans, India. IUCN-Bangkok. Thailand. I, 1–247

    Google Scholar 

  • Chiu CY, Hsiu FS, Chen SS, Chou CH (1995) Reduced toxicity of Cu and Zn to mangrove seedlings (Kandelia candel (L.) Druce.) in saline environments. Bot Bull Acad Sin 36:19–24

    CAS  Google Scholar 

  • Custodio L, Ferreira AC, Pereira H (2012) Themarine halophytes Carpobrotus edulis and Arthrocnemum macrostachyum are potential sources of nutritionally important PUFAs and metabolites with antioxidant, metal chelating and anticholinesterase inhibitory activities. Bot Mar 3:281–288

    Google Scholar 

  • Declercq DR, Daun JK (1998) Quality of 1997 Ontario Canola. Final Report. Grain Research Laboratory, Winnipeg, Manitoba, Canada: Canadian Grain Commission

    Google Scholar 

  • Debez A, Belghith I, Friesen J, Montzka C, Elleuche S (2017) Facing the challenge of sustainable bioenergy production: could halophytes be part of the solution. J Biol Eng 11:27

    Google Scholar 

  • El Shaer HM (2004) Potentiality of halophytes as animal fodder under arid conditions of Egypt. Rangeland and pasture rehabilitation in Mediterranean areas. Cah Options MĂ©ditĂ©rr 62:369–374

    Google Scholar 

  • Eshel A, Oren I, Alekparov C, Eilam T, Zilberstein A (2011) Biomass production by desert halophytes: alleviating the pressure on the scarce resources of arable soil and fresh water. Euro J Plant Sci Biotechnol 5:48–53

    Google Scholar 

  • Falleh H, Ksouri R, Medini F, Guyot S, Abdelly C, Magne C (2011) Antioxi-dant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind Crop Prod 34:1066–1071. https://doi.org/10.1016/j.indcrop.2011.03.018

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  • Gago C, Sousa AR, Juliao M, Miguel G, Antunes DC, Panagopoulos T (2011) Sustainable use of energy in the storage of halophytes used for food. Int J Energ Environ 4:5

    Google Scholar 

  • Glenn EP, Brown J, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gomez-Caravaca AM, Iafelice G, Lavini A, Pulvento C, Caboni MF, Marconi E (2012) Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. J Agric Food Chem 60:4620–4627. https://doi.org/10.1021/jf3002125

    Article  CAS  PubMed  Google Scholar 

  • Graf BL, Poulev A, Kuhn P, Grace MH, Lila MA, Raskin I (2014) Quinoa seeds leach phytoecdysteroids and other compounds with anti-diabetic properties. Food Chem 163:178–185. https://doi.org/10.1016/j.foodchem.2014.04.088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Hamidov A, Beltrao J, Neves A, Khaydarova V, Khamidov M (2007) Apocynum lancifolium and Chenopodium album potential species to remediate saline soils. WSEAS Trans Environ Dev 7:123–128

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ă–ztĂ¼rk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int. https://doi.org/10.1155/2014/589341

    Google Scholar 

  • He Z, Ruana C, Qin P, Seliskar DM, Gallagher JL (2003) Kosteletzkya virginica, a halophytic species with potential for agroecotechnology in Jiangsu Province, China. Ecol Eng 21:271–276

    Article  Google Scholar 

  • Herppich WB, Huyskens-Keil S, Schreiner M (2008) Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop. J App Bot Food Qual 1:47–54

    Google Scholar 

  • Jessop JP (1986) Family – Aizoaceae (Ficoidaceae, Mesembryanthemaceae, Molluginaceae, Tetragoniaceae). In: Jessop JP, Toelken HR (eds) Flora of South Australia part I, Lycopodiaceae – Rosaceae, vol 383. South Australian Government Publishing Division, Adelaide, p 415

    Google Scholar 

  • Kathiresan K (2000) A review of studies on Pichavaram mangrove, southeast India. Hydrobiologia 430(1–3):185–205

    Article  Google Scholar 

  • Kathiresan K (2012) Importance of mangrove ecosystem. Int J Marine Sci 2(10):70–89

    Google Scholar 

  • Khan MA, Ansari R, Ali H, Gul B, Nielsen BL (2009) Panicum turgidum: a sustainable feed alternative for cattle in saline areas. Agric Ecosyst Environ 129:542–546

    Article  Google Scholar 

  • Kokpol U, Chittawong V, Mills HD (1984) Chemical constituents of the roots of Acanthus illicifolius. J Nat Prod 49:355–356

    Article  CAS  Google Scholar 

  • Koyro HW, Khan MA, Lieth H (2011) Halophytic crops: a resource for the future to reduce the water crisis. Emir J Food Agric 23:001–016

    Article  Google Scholar 

  • Lokhande VH, Gor BK, Desai NS, Nikam TD, Suprasanna P (2013) Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agron Sustain Dev:4–22

    Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora Morphol Distrib Funct Ecol Plants 224:96–105. https://doi.org/10.1016/j.flora.2016.07.009

    Article  Google Scholar 

  • Nikalje GC, Suprasanna P (2018) Coping with metal toxicity–cues from halophytes. Front Plant Sci 9:777. https://doi.org/10.3389/fpls.2018.00777

  • Nikalje GC, Nikam TD, Suprasanna P (2017a) Looking at halophytic adaptation to high salinity through genomics landscape. Curr Genomics 18:6

    Article  Google Scholar 

  • Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P (2017b) Halophytes in biosaline agriculture: mechanism, utilization and value addition. Land Degr Dev. https://doi.org/10.1002/ldr.2819

    Article  Google Scholar 

  • Panta S, Flowers T, Doyle R, Lane P, Haros G, Shabala S (2016) Growth responses of Atriplex lentiformis and Medicago arborea in three soil types treated with saline water irrigation. Environ Exp Bot 128:39–50. https://doi.org/10.1016/j.envexpbot.2016.04.002

    Article  CAS  Google Scholar 

  • Pedras MSC, Zheng QA, Shatte G, Adio AM (2009) Photochemical dimerization of wasalexins in UV-irradiated Thellungiella halophila and in vitro generates unique cruciferous phytoalexins. Phytochemistry 70:2010–2016. https://doi.org/10.1016/j.phytochem.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  • Patel S (2016) Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech 6:104

    Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    Article  CAS  Google Scholar 

  • Qasim M, Gulzar S, Shinwari ZK, Khan MA (2010) Traditional ethno-botanical uses of halophytes from Hub, Balochistan. Pak J Bot 42:1543–1551

    Google Scholar 

  • Radwan HM, Shams KA, Tawfik WA, Soliman AM (2008) Investigation of the glucosinolates and lipids constituents of Cakile maritime (Scope) growing in Egypt and their biological activity. Res J Med Sci 3:182–187

    Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 10:2661–2664

    Article  Google Scholar 

  • Redondo-GĂ³mez S, Mateos-Naranjo E, Andrades-Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307

    Article  Google Scholar 

  • Roy SJ, NegrĂ£o S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  Google Scholar 

  • Sagi B, Erdei L (2002) Distinct physiological characteristics of two subspecies of Aster tripolium L. Acta Biol Szeged 46:257–258

    Google Scholar 

  • Santi G, D’Annibale A, Eshel A (2014) Bioethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass Bioenergy 61:73–81

    Article  CAS  Google Scholar 

  • Shahani NM, Memon MI (1988) Survey and domestication of wild medicinal plants of Sindh, Pakistan. Research Report, Agricultural Research Council Pakistan

    Google Scholar 

  • Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK (2016) Halophytes as bioenergy crops. Front Plant Sci 7:1372. https://doi.org/10.3389/fpls.2016.01372

    Article  PubMed  PubMed Central  Google Scholar 

  • Shillo R, Ding M, Pasternak D, Zaccai M (2002) Cultivation of cut flower and bulb species with saline water. Sci Hortic 92:41–54

    Article  Google Scholar 

  • Shiri M, Rabhi M, Abdelly C, Bouchereau A, El Amrani A (2016) Moderate salinity reduced phenanthrene-induced stress in the halophyte plant model Thellungiella salsuginea compared to its glycophyte relative Arabidopsis thaliana: cross talk and metabolite profiling. Chemosphere 155:453–462. https://doi.org/10.1016/j.chemosphere.2016.04.080

    Article  CAS  PubMed  Google Scholar 

  • TardĂ­o J, Pardo-de Santayana M, Morales R (2006) Ethnobotanical review of wild edible plants in Spain. Bot J Linn Soc 152(1):27–71

    Article  Google Scholar 

  • Vannucci M (ed) (2004) Mangrove management and conservation: present and future. United Nations University, Tokyo

    Google Scholar 

  • Ventura Y, Wuddineh WA, Myrzabayeva M (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196

    Article  CAS  Google Scholar 

  • Weber DJ, Gul B, Khan MA, Williams T, Wayman P, Warner S (2001) Composition of vegetable oil from seeds of native halophytic shrubs. In: McArthur ED, Fairbanks DJ, comps 2000. Proceedings: Shrubland ecosystem genetics and biodiversity. Proceedings RMRS-P-000. U.S. Department of Agriculture, Forest Service Rocky Mountain Research Station, Ogden

    Google Scholar 

  • Weber DJ, Ansari R, Gul B, Khan MA (2007) Potential of halophyte as source of edible oil. J Arid Environ 68:315–321

    Article  Google Scholar 

  • World Bank (2008) World Development Report: agriculture for development. World Bank, Washington DC

    Google Scholar 

  • Yajun B, Xiaojing L, Weiqiang L (2003) Primary analysis of four salt tolerant plants growing in Hai-He plain, China. In: Leith H, Mochtchenko M (eds) Cash crop halophytes: recent studies. Kluwar Academic, London, pp 135–138

    Chapter  Google Scholar 

  • Zaccai M (2002) Floriculture in the Mediterranean region. Acta Hortic 582:165–173

    Article  Google Scholar 

  • Zurayk RA, Baalbaki R (1996) Inula crithmoides: a candidate plant for saline agriculture. Arid Soil Res Rehabil 3:213–223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikalje, G.C., Bhaskar, S.D., Yadav, K., Penna, S. (2019). Halophytes: Prospective Plants for Future. In: Hasanuzzaman, M., Nahar, K., Ă–ztĂ¼rk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_10

Download citation

Publish with us

Policies and ethics