Skip to main content

Halophyte Responses and Tolerance to Abiotic Stresses

  • Chapter
  • First Online:
Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes

Abstract

Different anthropogenic activities result in the contamination and degradation of the agricultural ecosystem. Improper disposal of industrial waste, use of excess chemical fertilizers, and mining are major sources of soil contamination. These adverse conditions exert a negative effect on crop growth and yield, while a group of plants, known as halophytes, exhibit greater tolerance. These plants are native to such adverse environments and can withstand different abiotic stresses such as salinity, drought, toxic metal stress, and hypoxia. Halophytes grow luxuriantly in saline soils, which make them suitable for saline agriculture. In addition, they are a good source of salt-responsive genes and value-added products. Many halophytes show common biochemical and physiochemical responses to salt stress, whereas under multiple stresses, different mechanisms operate. The accumulation of osmolytes such as proline, selectivity in K:N, the exclusion of sodium and vacuolar compartmentalization, the induction of antioxidant molecules (enzymatic and non-enzymatic) are the most common features of halophytic adaptation to stress. The comparative study of halophytes and glycophytes revealed that the former are well equipped with cross-tolerance mechanism and are well prepared before stress imposition. It is also reported that pretreatment/priming with salinity or other stresses in early developmental stage of halophytes improves their salt tolerance at later stage. This observation suggests that halophytes might have stress memory, which helps them to respond better to stress conditions. In this article, we present a current perspective of the general tolerance mechanism and the responses of halophytes to different abiotic stresses such as salt, drought, toxic metal, and combination of these. Understanding the mechanism of such abiotic stresses alone and in combination will help to identify potential halophytes for re-vegetation or possible breeding for redevelopment of salt-affected agricultural lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian-Romeroa M, Wilsona SJ, Blundena G, Yanga MH, Carabot-Cuervoa A, Bashira AK (1998) Betaines in coastal plants. Biochem Syst Ecol 26:535–543

    Article  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armstrong W (1980) Aeration in higher plants. Adv Bot Res 7:225–332

    Article  Google Scholar 

  • Atreya A, Vartak V, Bhargava S (2009) Salt priming improves tolerance to desiccation stress and to extreme salt stress in Bruguiera cylindrica. Int J Integr Biol 6:68–73

    CAS  Google Scholar 

  • Baena-González E, Rolland F, Thevelein JM, Sheen JA (2007) Central integrator of transcription networks in plant stress and energy signaling. Nature 448:938–942

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Barrett-Lennard EG (2003) The interaction between waterlogging and salinity in higher plants: causes, consequences and implications. Plant Soil 253:35–54

    Article  CAS  Google Scholar 

  • Batty LC, Dolan C (2013) The potential use of phytoremediation for sites with mixed organic and inorganic contamination. Crit Rev Environ Sci Technol 43:217–259

    Article  CAS  Google Scholar 

  • Bazihizina N, Barrett-Lennard EG, Colmer TD (2012) Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone. J Exp Bot 63:6347–6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett SJ, Barrett-Lennard EG, Colmer TD (2009) Salinity and waterlogging as constraints to salt land pasture production: a review. Agric Ecosyst Environ 129:349–360

    Article  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Ann Bot 115:481–494

    Article  PubMed  Google Scholar 

  • Bradley PM, Morris JT (1990) Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology 71:282–287

    Article  CAS  Google Scholar 

  • Braun-Blanquet J, Conrad HS, Fuller GD (1933) Plant sociology: the study of plant communities. Nature 132:1–472

    Article  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Brown CE, Pezeshki SR (2007) Threshold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying. J Plant Physiol 164:274–282

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful ‘memories’ of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Brun FG, Olivé I, Malta EJ, Vergara JJ, Hernández I, Pérez-Lloréns JJ (2008) Increased vulnerability of Zostera noltii to stress caused by low light and elevated ammonium levels under phosphate deficiency. Mar Ecol Prog Ser 365:67–75

    Article  Google Scholar 

  • Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT-2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C (2003) Heavy metals and plants – model systems and hyperaccumulators. New Phytol 159:289–293

    Article  PubMed  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Pedersen O, Wetson A, Flowers TJ (2013) Oxygen dynamics in a salt-marsh soil and in Suaeda maritima during tidal submergence. Environ Exp Bot 92:73–82

    Article  CAS  Google Scholar 

  • Cong M, Lv J, Liu X, Zhao J, Wu H (2013) Gene expression responses in Suaeda salsa after cadmium exposure. Springerplus 2:232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Am Zool 41:758–769

    CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel K, Ryan J (2005) Methods for speciation of metals in soils. J Environ Qual 34:1707

    Article  PubMed  CAS  Google Scholar 

  • Debez A, Huchzermeyer B, Abdelly C, Koyro HW (2011) Sabkha ecosystems, vol 46, pp 59–77

    Chapter  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+ efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Dhar R, Sägesser R, Weikert C, Wagner A (2013) Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation. Mol Biol Evol 30:573–588

    Article  CAS  PubMed  Google Scholar 

  • Ellouzi H, Ben Hamed K, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143

    Article  CAS  PubMed  Google Scholar 

  • Ellouzi H, Ben Hamed K, Asensi-Fabado MA, Müller M, Abdelly C, Munné-Bosch S (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima. Planta 237:1311–1323

    Article  CAS  PubMed  Google Scholar 

  • English JP, Colmer TD (2011) Salinity and waterlogging tolerances in three stem-succulent halophytes (Tecticornia species) from the margins of ephemeral salt lakes. Plant Soil 348:379–396

    Article  CAS  Google Scholar 

  • English JP, Colmer TD (2013) Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Funct Plant Biol 40:897–912

    Article  CAS  PubMed  Google Scholar 

  • Ernst WH, Nelissen HJM (2000) Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environ Pollut 107:329–338

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Muscolo A (2015) Halophytes in a changing world. AoB Plants 7:1–12. https://doi.org/10.1093/aobpla/plv020

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79

    Article  CAS  PubMed  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. Am J Bot 85:10–16

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Nelson SG, Ambrose B, Martinez R, Soliz D, Pabendinskas V, Hultine K (2012) Comparison of salinity tolerance of three Atriplex spp. in well-watered and drying soils. Environ Exp Bot 83:62–72

    Article  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorai M, Ennajeh M, Khemira H, Neffati M (2010) Combined effect of NaCl-salinity and hypoxia on growth, photosynthesis, water relations and solute accumulation in Phragmites australis plants. Flora 205:462–470

    Article  Google Scholar 

  • Greenway H, Armstrong W, Colmer TD (2006) Conditions leading to high CO2 in waterlogged-flooded soils and possible effects on root growth and metabolism. Ann Bot 98:9–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigore MN, Ivanescu L, Toma C (2014) Halophytes: an integrative anatomical study. https://doi.org/10.1007/978-3-319-05729-3

    Google Scholar 

  • Hamed KB, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Bosch SM, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40:883–896

    Article  CAS  PubMed  Google Scholar 

  • Han RM, Lefèvre I, Albacete A, Pérez-Alfocea F, Barba-Espín G, Díaz-Vivancos P, Quinet M, Ruan CJ, Hernández JA, Cantero-Navarro E, Lutts S (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plant 147:352–368

    Article  CAS  PubMed  Google Scholar 

  • Hessini K, Lachaâl M, Cruz C, Soltani A (2009) Role of ammonium to limit nitrate accumulation and to increase water economy in wild swiss chard. J Plant Nutr 32:821–836

    Article  CAS  Google Scholar 

  • Hessini K, Hamed KB, Gandour M, Mejri M, Abdelly C (2013) Ammonium nutrition in the halophyte Spartina alterniflora under salt stress: evidence for a priming effect of ammonium? Plant Soil 370:163–173

    Article  CAS  Google Scholar 

  • Hou Q, Bartels D (2015) Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann Bot 115:465–479

    Article  CAS  PubMed  Google Scholar 

  • Huang GY, Wang YS (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77:1026–1029

    Article  CAS  PubMed  Google Scholar 

  • Huang GY, Wang YS (2010) Expression and characterization analysis of type 2 metallothionein from grey mangrove species (Avicennia marina) in response to metal stress. Aquat Toxicol 99:86–92

    Article  CAS  PubMed  Google Scholar 

  • Huchzermeyer B, Flowers T (2013) Putting halophytes to work genetics, biochemistry and physiology. Funct Plant Biol 40:V–VIII

    Article  CAS  PubMed  Google Scholar 

  • Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55

    Article  CAS  PubMed  Google Scholar 

  • Jenkins S, Barrett-Lennard EG, Rengel Z (2010) Impacts of waterlogging and salinity on puccinellia (Puccinellia ciliata) and tall wheatgrass (Thinopyrum ponticum): zonation on saltland with a shallow water-table, plant growth, and Na+ and K+ concentrations in the leaves. Plant Soil 329:91–104

    Article  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254

    Article  CAS  PubMed  Google Scholar 

  • Kholodova VP, Volkov KS, Kuznetsov VV (2005) Adaptation of the common ice plant to high copper and zinc concentrations and their potential using for phytoremediation. Russ J Plant Physiol 52:748–757

    Article  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Konnerup D, Moir-Barnetson L, Pedersen O, Veneklaas EJ, Colmer TD (2015) Contrasting submergence tolerance in two species of stem-succulent halophytes is not determined by differences in stem internal oxygen dynamics. Ann Bot 115:409–418

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Fujiyama H (2010) Responses of halophyte Salicornia bigelovii to different forms of nitrogen source. Pedosphere 20:311–317

    Article  CAS  Google Scholar 

  • Lefèvre I, Marchal G, Meerts P, Corréal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  CAS  Google Scholar 

  • Lefèvre I, Marchal G, Edmond GM, Correal E, Lutts S (2010) Cadmium has contrasting effects on polyethylene glycol sensitive and resistant cell lines in the Mediterranean halophyte species Atriplex halimus L. J Plant Physiol 167:365–374

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre I, Vogel-Mikuš K, Jeromel L, Vavpetič P, Planchon S, Arčon I, Van Elteren JT, Lepoint G, Gobert S, Renaut J, Pelicon P, Lutts S (2014) Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant Cell Environ 37:1299–1320

    Article  PubMed  CAS  Google Scholar 

  • Leidi EO, Silberbush M, Lips SH (1991) Wheat growth as affected by nitrogen type, PH and salinity. I. Biomass production and mineral composition. J Plant Nutr 14:235–246

    Article  CAS  Google Scholar 

  • Lewis OAM, Leidi EO, Lips SH (1989) Effect of nitrogen source on growth response to salinity stress in maize and wheat. New Phytol 111:155–160

    Article  CAS  PubMed  Google Scholar 

  • Lin WY, Lin SI, Chiou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60:1427–1438

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yang C, Zhang L, Li L, Liu S, Yu J, You L, Zhou D, Xia C, Zhao J, Wu H (2011) Metabolic profiling of cadmium-induced effects in one pioneer intertidal halophyte Suaeda salsa by NMR-based metabolomics. Ecotoxicology 20:1422–1431

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu H, Ji C, Wei L, Zhao J, Yu J (2013) An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS One 8:e64041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu YX, Li CJ, Zhang FS (2005) Transpiration, potassium uptake and flow in tobacco as affected by nitrogen forms and nutrient levels. Ann Bot 95:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S, Lefèvre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33:1271

    Article  CAS  PubMed  Google Scholar 

  • Lutts S, Hausman JF, Quinet M, Lefèvre I (2012) Ecophysiology and responses of plants under salt stress, pp 315–353. https://doi.org/10.1007/978-1-4614-4747-4_12

    Google Scholar 

  • Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32:4–13

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Kaiser WM (2003) Growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] as affected by nitrogen source. Plant Soil 252:359–366

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes-an emerging trend in phytoremediation. Int J Phytoremediation 13:959–969

    Article  CAS  PubMed  Google Scholar 

  • Martínez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    Article  PubMed  CAS  Google Scholar 

  • Milic D, Lukovic J, Ninkov J, Zeremski-Skoric T, Zoric L, Vasin J, Milic S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7(2):307–317

    CAS  Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829. https://doi.org/10.3389/fpls.2017.00829

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462

    Article  CAS  PubMed  Google Scholar 

  • Mommer L, Pons TL, Wolters-Arts M, Venema JH, Visser EJW (2005) Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol 139:497–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munne-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munzarova E, Lorenzen B, Brix H, Vojtiskova L, Votrubova O (2006) Effect of NH4+/NO3- availability on nitrate reductase activity and nitrogen accumulation in wetland helophytes Phragmites australis and Glyceria maxima. Environ Exp Bot 55:49–60

    Article  CAS  Google Scholar 

  • Nemat Alla MM, Khedr AHA, Serag MM, Abu-Alnaga AZ, Nada RM (2011) Physiological aspects of tolerance in Atriplex halimus L. to NaCl and drought. Acta Physiol Plant 33:547–557

    Article  CAS  Google Scholar 

  • Nieman RH, Clark R (1976) Interactive effects of salinity and phosphorus nutrition of the concentrations of phosphate and phosphate esters in mature photosynthesizing corn leaves. Plant Physiol 57:157–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikalje GC, Nikam TD, Suprasanna P (2017a) Looking at halophytic adaptation through mechanisms of ROS, redox regulation and signaling, Current Genomics, 18(6): 542–552

    Google Scholar 

  • Nikalje GC, Variyar PS, Joshi MV, Nikam TD, Suprasanna P (2017b) Ion homeostasis and accumulation of flavanoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) L. Plos One 13(4): e0193394. https://doi.org/10.1371/journal.pone.0193394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P (2017c) Halophytes in Biosaline Agriculture: mechanism, utilization and value added products. Land Degradation and Development https://doi.org/10.1002/ldr.2819

    Article  Google Scholar 

  • Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Funct Plant Biol 40:832–847

    Article  CAS  PubMed  Google Scholar 

  • Pedersen O, Binzer T, Borum J (2004) Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ 27:595–602

    Article  CAS  Google Scholar 

  • Pedersen O, Vos H, Colmer TD (2006) Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata. Plant Cell Environ 29:1388–1399

    Article  CAS  PubMed  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Rastgoo L, Alemzadeh A (2011) Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Aust J Crop Sci 5:375–383

    CAS  Google Scholar 

  • Reboreda R, Caçador I (2007) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146:147–154

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40:913–921

    Article  CAS  Google Scholar 

  • Reef R, Lovelock CE (2015) Regulation of water balance in mangroves. Ann Bot 115:385–395

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 5:625–632

    Article  Google Scholar 

  • Rodrigo-Moreno A, Poschenrieder C, Shabala S (2013) Transition metals: a double edge sward in ROS generation and signaling. Plant Signal Behav 8:e23425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saslis-Lagoudakis CH, Hua X, Bui E, Moray C, Bromham L (2015) Predicting species’ tolerance to salinity and alkalinity using distribution data and geochemical modelling: a case study using Australian grasses. Ann Bot 115:343–351

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Mackay A (2011) In: Kader JC, Delseny M (eds) Ion transport in halophytes, Adv Bot Res, vol 57. Academic, Burlington, pp 151–199

    Google Scholar 

  • Shabala S, Shabala L, Barcelo J, Poschenrieder C (2014) Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ 37:2216–2233

    CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Shepherd KA, Wilson PG (2007) Incorporation of the Australian genera Halosarcia, Pachycornia, Sclerostegia and Tegicornia into Tecticornia (Salicornioideae, Chenopodiaceae). Aust Syst Bot 20:319–331

    Article  Google Scholar 

  • Sirguey C, Ouvrard S (2013) Contaminated soils salinity, a threat for phytoextraction? Chemosphere 91:269–274

    Article  CAS  PubMed  Google Scholar 

  • Slama I, Ghnaya T, Hessinia K, Messedi D, Savouré A, Abdelly C (2007) Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot 61:10–17

    Article  CAS  Google Scholar 

  • Slama I, Ghnaya T, Savouré A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    Article  CAS  PubMed  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Ding X, Feng G, Zhang F (2006) Nutritional and osmotic roles of nitrate in a euhalophyte and a xerophyte in saline conditions. New Phytol 171:357–366

    Article  CAS  PubMed  Google Scholar 

  • Song J, Shi G, Xing S, Yin C, Fan H, Wang B (2009) Ecophysiological responses of the euhalophyte Suaeda salsa to the interactive effects of salinity and nitrate availability. Aquat Bot 91:311–317

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teakle NL, Real D, Colmer TD (2006) Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant Soil 289:369–383

    Article  CAS  Google Scholar 

  • Teakle NL, Bazihizina N, Shabala S, Colmer TD, Barrett-Lennard EG, Rodrigo-Moreno A, Läuchli AE (2013) Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: the importance of K+ retention in roots. Environ Exp Bot 87:69–78

    Article  CAS  Google Scholar 

  • Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2008) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149:938–948

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:360–368

    Article  CAS  Google Scholar 

  • Touchette BW, Burkholder JAM (2000) Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol 250:133–167

    Article  CAS  PubMed  Google Scholar 

  • Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro. Mol Genet Genomics 281:99–108

    Article  CAS  PubMed  Google Scholar 

  • Uzilday B, Ozgur R, Sekmen AH, Yildiztugay E, Turkan I (2015) Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity. Ann Bot 115:449–463

    Article  CAS  PubMed  Google Scholar 

  • Vázquez MD, Poschenriede C, Barcelo J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens. J C Presl Bot Acta 107:243–250

    Article  Google Scholar 

  • Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94:3–8

    Article  Google Scholar 

  • Wang HL, Tian CY, Jiang L, Wang L (2014) Remediation of heavy metals contaminated saline soils: a halophyte choice? Environ Sci Technol 48:21–22

    Article  CAS  PubMed  Google Scholar 

  • Wetson AM, Flowers TJ (2010) The effect of saline hypoxia on growth and ion uptake in Suaeda maritima. Funct Plant Biol 37:646–655

    Article  CAS  Google Scholar 

  • Wetson AM, Zarb C, John EA, Flowers TJ (2012) High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis. Ann Bot 109:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson C, Eller N, Gartner A, Vicente O, Heberle-Bors E (1993) Isolation and characterization of a tobacco cDNA clone encoding a putative MAP kinase. Plant Mol Biol 23:543–551

    Article  CAS  PubMed  Google Scholar 

  • Winkel A, Colmer TD, Ismail AM, Pedersen O (2013) Internal aeration of paddy field rice Oryza sativa during complete submergence importance of light and floodwater O2. New Phytol 197:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Liu X, Zhao J, Yu J (2013) Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the halophyte Suaeda salsa. J Plant Growth Regul 32:353–361

    Article  CAS  Google Scholar 

  • Xu C, Tang X, Shao H, Wang H (2016) Salinity tolerance mechanism of economic halophytes from physiological to molecular hierarchy for improving food quality. Curr Genomics 17:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    Article  CAS  Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Hazard Mater 183:609–615

    Article  CAS  PubMed  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Meinzer FC (1999) Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Aust J Plant Physiol 26:79

    Google Scholar 

  • Zribi OT, Labidi N, Slama I, Debez A, Ksouri R, Rabhi M, Smaoui, Abdelly C (2012) Alleviation of phosphorus deficiency stress by moderate salinity in the halophyte Hordeum maritimum L. Plant Growth Regul 66:75–85

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprasanna Penna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikalje, G.C., Yadav, K., Penna, S. (2019). Halophyte Responses and Tolerance to Abiotic Stresses. In: Hasanuzzaman, M., Nahar, K., Öztürk , M. (eds) Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes. Springer, Singapore. https://doi.org/10.1007/978-981-13-3762-8_1

Download citation

Publish with us

Policies and ethics