An SDN-Based Secure Mobility Model for UAV-Ground Communications

  • Rajesh KumarEmail author
  • Mohd. Abuzar Sayeed
  • Vishal Sharma
  • Ilsun You
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 971)


Multi-UAV collaborative networks provide with the opportunity to exploit civil, chemical, biological, radiological, nuclear and geographical reconnaissance, survey, management, and control. For the collaborative network formation, coverage is of prime paramountcy. Alongside coverage, possession of information and communication security is withal a major challenge. The coverage quandary can be resolved by a perspicacious selection of UAV waypoints. But the security paradigm which can be an effect of faulty node, intrusion or even choice of erroneous communication channels needs to be taken care of through efficacious strategies. Consequently, both a specialized UAV mobility model and a security mechanism are required in order to establish prosperous collaborative networks. In this article, an SDN-based secure mobility model is proposed which takes into account the topological density and restricts the UAV and ground node (Wireless Sensor Networks (WSNs)) transmissions to authenticity. Significant gains are observed for throughput, coverage, and latency by establishing a simulated network between multiple UAVs and WSN motes.


UAVs Mobility model SDN Security WSNs 



This paper was presented at the Workshop associated with the 12th International Conference on Provable Security, 25–28 October, 2018, Jeju, Rep. of Korea.


  1. 1.
    Bunse, C., Plotz, S.: Security analysis of drone communication protocols. In: Payer, M., Rashid, A., Such, J.M. (eds.) ESSoS 2018. LNCS, vol. 10953, pp. 96–107. Springer, Cham (2018). Scholar
  2. 2.
    Wu, Q., Zeng, Y., Zhang, R.: Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 17(3), 2109–2121 (2018)CrossRefGoogle Scholar
  3. 3.
    Shi, W., Zhou, H., Li, J., Xu, W., Zhang, N., Shen, X.: Drone assisted vehicular networks: architecture, challenges and opportunities. IEEE Network (2018)Google Scholar
  4. 4.
    Naqvi, S.A.R., Hassan, S.A., Pervaiz, H., Ni, Q.: Drone-aided communication as a key enabler for 5G and resilient public safety networks. IEEE Commun. Mag. 56(1), 36–42 (2018)CrossRefGoogle Scholar
  5. 5.
    Sharma, V., Kumar, R.: A cooperative network framework for multi-UAV guided ground ad hoc networks. J. Intell. Robot. Syst. 77(3–4), 629–652 (2015)CrossRefGoogle Scholar
  6. 6.
    Sekander, S., Tabassum, H., Hossain, E.: Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects. IEEE Commun. Mag. 56(3), 96–103 (2018)CrossRefGoogle Scholar
  7. 7.
    Dey, V., Pudi, V., Chattopadhyay, A., Elovici, Y.: Security vulnerabilities of unmanned aerial vehicles and countermeasures: an experimental study. In: VLSI Design, pp. 398–403. IEEE (2018)Google Scholar
  8. 8.
    Wu, Q., Liu, L., Zhang, R.: Fundamental tradeoffs in communication and trajectory design for UAV-enabled wireless network, arXiv preprint arXiv:1805.07038 (2018)
  9. 9.
    Wang, W., Guan, X., Wang, B., Wang, Y.: A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Inf. Sci. 180(3), 399–413 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhao, J., Gao, F., Kuang, L., Wu, Q., Jia, W.: Channel tracking with flight control system for UAV mmWave MIMO communications. IEEE Commun. Lett. 22, 1224–1227 (2018)CrossRefGoogle Scholar
  11. 11.
    Liu, L., Zhang, S., Zhang, R.: CoMP in the sky: UAV placement and movement optimization for multi-user communications, arXiv preprint arXiv:1802.10371 (2018)
  12. 12.
    Yang, D., Wu, Q., Zeng, Y., Zhang, R.: Energy trade-off in ground-to-UAV communication via trajectory design. IEEE Trans. Veh. Technol. 67, 6721–6726 (2018)Google Scholar
  13. 13.
    Sharma, V., You, I., Kumar, R., Chauhan, V.: OFFRP: optimised fruit fly based routing protocol with congestion control for UAVs guided ad hoc networks. Int. J. Ad Hoc Ubiquit. Comput. 27(4), 233–255 (2018)CrossRefGoogle Scholar
  14. 14.
    Sharma, V., Bennis, M., Kumar, R.: UAV-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett. 20(6), 1207–1210 (2016)CrossRefGoogle Scholar
  15. 15.
    Sharma, V., Reina, D., Kumar, R.: HMADSO: a novel hill Myna and desert sparrow optimization algorithm for cooperative rendezvous and task allocation in FANETS. Soft Comput. 22(18), 6191–6214 (2018)CrossRefGoogle Scholar
  16. 16.
    Grocholsky, B., Keller, J., Kumar, V., Pappas, G.: Cooperative air and ground surveillance. IEEE Robot. Autom. Mag. 13(3), 16–25 (2006)CrossRefGoogle Scholar
  17. 17.
    Ciobanu, R.-I., Reina, D., Dobre, C., Toral, S., Johnson, P.: JDER: a history-based forwarding scheme for delay tolerant networks using Jaccard distance and encountered ration. J. Netw. Comput. Appl. 40, 279–291 (2014)CrossRefGoogle Scholar
  18. 18.
    Chandhar, P., Danev, D., Larsson, E.G.: Massive MIMO as enabler for communications with drone swarms. In: Unmanned Aircraft Systems, pp. 347–354. IEEE (2016)Google Scholar
  19. 19.
    Ho, D.-T., Shimamoto, S.: Highly reliable communication protocol for WSN-UAV system employing TDMA and PFS scheme. In: 2011 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1320–1324. IEEE (2011)Google Scholar
  20. 20.
    Han, Z., Swindlehurst, A.L., Liu, K.R.: Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles. IEEE Trans. Veh. Technol. 58(7), 3533–3546 (2009)CrossRefGoogle Scholar
  21. 21.
    Han, Z., Swindlehurst, A.L., Liu, K.R.: Smart deployment/movement of unmanned air vehicle to improve connectivity in MANET. In: 2006 IEEE Wireless Communications and Networking Conference, WCNC 2006, vol. 1, pp. 252–257. IEEE (2006)Google Scholar
  22. 22.
    Taqieddin, E., Awad, F., Ahmad, H.: Location-aware and mobility-based performance optimization for wireless sensor networks. JoWUA 8(4), 37–59 (2017)Google Scholar
  23. 23.
    Azari, M.M., Rosas, F., Chen, K.-C., Pollin, S.: Ultra reliable UAV communication using altitude and cooperation diversity. IEEE Trans. Commun. 66(1), 330–344 (2018)CrossRefGoogle Scholar
  24. 24.
    Nguyen, M.-N., Nguyen, L.D., Duong, T.Q., Tuan, H.D.: Real-time optimal resource allocation for embedded UAV communication systems. IEEE Wirel. Commun. Lett. (2018).
  25. 25.
    Liu, D., et al.: Self-organizing relay selection in UAV communication networks: A matching game perspective, arXiv preprint arXiv:1805.09257 (2018)
  26. 26.
    Sharma, V., Kumar, R., Kumar, N.: DPTR: distributed priority tree-based routing protocol for FANETs. Comput. Commun. 122, 129–151 (2018)CrossRefGoogle Scholar
  27. 27.
    Sharma, V., Kumar, R.: Three-tier neural model for service provisioning over collaborative flying ad hoc networks. Neural Comput. Appl. 29(10), 837–856 (2018)CrossRefGoogle Scholar
  28. 28.
    Harri, J., Filali, F., Bonnet, C.: Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun. Surv. Tutor. 11(4), 19–41 (2009)CrossRefGoogle Scholar
  29. 29.
    Valenza, F., Su, T., Spinoso, S., Lioy, A., Sisto, R., Vallini, M.: A formal approach for network security policy validation. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. (JoWUA) 8(1), 79–100 (2017)Google Scholar
  30. 30.
    Bhargava, B.K., Johnson, A.M., Munyengabe, G.I., Angin, P.: A systematic approach for attack analysis and mitigation in V2V networks. JoWUA 7(1), 79–96 (2016)Google Scholar
  31. 31.
    Secinti, G., Darian, P.B., Canberk, B., Chowdhury, K.R.: SDNs in the sky: robust end-to-end connectivity for aerial vehicular networks. IEEE Commun. Mag. 56, 16–21 (2018)CrossRefGoogle Scholar
  32. 32.
    Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 30(14–15), 2826–2841 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rajesh Kumar
    • 1
    Email author
  • Mohd. Abuzar Sayeed
    • 1
  • Vishal Sharma
    • 2
  • Ilsun You
    • 2
  1. 1.Computer Science and Engineering DepartmentThapar Institute of Engineering and Technology (TIET)PatialaIndia
  2. 2.Department of Information Security EngineeringSoonchunhyang UniversityAsan-siRepublic of Korea

Personalised recommendations