Skip to main content

Recent Advances in the au NP Treatment Strategies of Lung Cancers

  • Chapter

Abstract

Of late, drug delivery using metal nanoparticles (NPs) having tunable geometric and physicochemical properties has been an intriguing domain of research. The foremost advantages of overwhelming scientific interest toward nanoparticle (NP)-mediated drug delivery encompass the size- and shape-specific response, capability of selective delivery to only affected cells, and, above all, the reduced patient sensitization via moderation of drug payloads. Among the several kinds of metal NPs, Au-based NPs are swiftly emerging as robust agents for delivering drugs to even most hard to reach body locations. The chief specialty of Au NPs is the diversity of their shapes and inert nature, making them much less toxic (than anticipated), thermally conducting chemical response which imparts them a synergistic chemical response along with the tagged drugs. A lot has been talked about the insufficient drug internalization once it has been delivered to treat cancers. The multifunctional Au NPs portray a benign solution in this regard via simultaneous surface tagging of diagnostic and drug delivery agents on their surface. Studies have shown a significant improvement in the drug internalization capability of Au nanorods (NRs) compared to their spherical counterparts, which has recently intensified investigations on NR-based anticancer therapies. Another interesting property of Au NPs has been their versatile and much easily available preparation methods that require less energy from outside and are also biocompatible. Among several methods, those involving chemical reduction have been the subject of interest, owing to a vast range of available reducing agents which could provide NPs of different features. With such insights, the present compilation summarizes the most recent attempts in Au NP-based lung cancer (LC) treatment strategies, focusing peculiarly on shape- and size-dependent differential impacts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez EV, Cambón A, Pardo A, Mosquera VX, Mosquera AB, Topete A, Barbosa S, Taboada P, Mosquera V (2018) Gold nanorod-based nanohybrids for combinatorial therapeutics. ACS Omega 3:12633–12647

    Google Scholar 

  • Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q, Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y, Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR, Houlston RS (2008) Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 40:616–622

    Google Scholar 

  • Arnida, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H (2011) Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 77:417–423

    Google Scholar 

  • C.H. Baker, D. Kedar, M.F. McCarty, R. Tsan R, K.L. Weber, C.D. Bucana and I.J. Fidler (2002) Blockade of epidermal growth factor receptor signaling on tumor cells and tumor-associated endothelial cells for therapy of human carcinomas. Am J Pathol 161:929–938

    Google Scholar 

  • Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, Ramos AH, Woo MS, Weir BA, Getz G, Beroukhim R, O’Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac LR, Lafargue CJ, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs DB, Lin L, Giordano TJ, Wagner P, Minna JD, Gazdar AF, Zhu CQ, Brose MS, Cecconello I, Ribeiro U Jr, Marie SK, Dahl O, Shivdasani RA, Tsao MS, Rubin MA, Wong KK, Regev A, Hahn WC, Beer DG, Rustgi AK, Meyerson M (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41:1238–1242

    Google Scholar 

  • Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM (2002) Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 200:581–597

    Google Scholar 

  • Bazak R, Houri M, Elachy S, Hussein W, Reefat T (2014) Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2:904–908

    Google Scholar 

  • Bazak R, Houri M, Alchy SE, Kamel S, Refaat T (2015) Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141:769–784

    Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Google Scholar 

  • Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotubebased drug delivery ACS Nano 3:307–316

    Google Scholar 

  • Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823

    Google Scholar 

  • Carretero J, Medina PP, Pio R, Montuenga LM, Sanchez-Cespedes M (2004) Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 23:4037–4040

    Google Scholar 

  • Chauhan VP, Popovi Z, Chen O, Cui J, Fukumura D, Bawendi MG, Jain RK (2011) Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed 50:11417–11420

    Google Scholar 

  • Chow G, Tauler J, Mulshine JL (2010) Cytokines and growth factors stimulate hyaluronan production: role of hyaluronan in epithelial to mesenchymal-like transition in non-small cell lung cancer. J Biomed Biotechnol 2010:485468

    Google Scholar 

  • Cooper WA, Lam DCL, O’Toole SA, Minna JD (2013) Molecular biology of lung cancer. J Thorac Dis 5:S479–S490

    Google Scholar 

  • Davidson MR, Gazdar AF, Clarke BE (2013) The pivotal role of pathology in the management of lung cancer. J Thorac Dis 5:S463–S478

    Google Scholar 

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G,Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, AC ACC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Google Scholar 

  • Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Google Scholar 

  • Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Nat Cancer Inst 98:335–344

    Google Scholar 

  • Eren B, Sar M, Oz B, Dincbas FH (2008) MMP-2, TIMP-2 and CD44v6 Expression in Non-small-cell lung carcinomas. Ann Acad Med Singap 37:32–39

    Google Scholar 

  • Fahmy TM, Samstein RM, Harness CC, Mark Saltzman W (2005) Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 26:5727–5736

    Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  Google Scholar 

  • Feng Q, Hawes SE, Stern JE, Wiens L, Lu H, Dong ZM, Jordan CD, Kiviat NB, Vesselle H (2008) DNA methylation in tumor and matched normal tissues from non-small cell lung cancer patients. Cancer Epidemiol Biomark Prev 17:645–654

    Google Scholar 

  • Franklin WA, Veve R, Hirsch FR, Helfrich BA, Bunn PA Jr (2002) Epidermal growth factor receptor family in lung cancer and premalignancy. Semin Oncol Suppl 4:3–14

    Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat-Phys Sci 241:20–22

    Google Scholar 

  • Freund PL, Spiro M (1985) Colloidal catalysis: the effect of sol size and concentration. J Phys Chem 89:1074–1077

    Google Scholar 

  • Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    Google Scholar 

  • Gonzalez-Arriaga P, Pascual T, Garcia-Alvarez A, Fernandez-Somoano A, Lopez-Cima MF, Tardon A (2012) Genetic polymorphisms in MMP 2, 9 and 3genes modify lung cancer risk and survival. BMC Cancer 12:121

    Google Scholar 

  • Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    Google Scholar 

  • Gupta R, Malik P, Das N, Singh M (2019) Antioxidant and physicochemical study of Psidium guajava prepared zinc oxide nanoparticles. J Mol Liq 275:749–767

    Google Scholar 

  • Harbour JW, Lai SL, Whang-Peng J, Gazdar AF, Minna JD, Kaye FJ (1988) Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241:353–357

    Google Scholar 

  • Hauser EA, Lynn JE (1940) Experiments in colloid chemistry. New York, McGraw-Hill

    Google Scholar 

  • Hay N (2005) The Akt-mTOR tango and its relevance to cancer. Cancer Cell 8:179–183

    Google Scholar 

  • Heist RS, Fidias P, Huberman M, Ardman B, Sequist LV, Temel JS, Lynch TJ (2008) A phase II study of oxaliplatin, pemetrexed, and bevacizumab in previously treated advanced non-small cell lung cancer. J Thorac Oncol 3:1153–1158

    Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Höglund P, Järvinen H, Kristo P, Pelin K, Ridanpää M, Salovaara R, Toro T, Bodmer W, Olschwang S, Olsen AS, Stratton MR, de la Chapelle A, Aaltonen LA (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391:184–187

    Google Scholar 

  • Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59(Suppl):21–26

    Google Scholar 

  • Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Barón AE, Zeng C, Franklin WA (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807

    Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253:49–53

    Google Scholar 

  • Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, Fabianova E, Mates D, Bencko V, Foretova L, Janout V, Chen C, Goodman G, Field JK, Liloglou T, Xinarianos G, Cassidy A, McLaughlin J, Liu G, Narod S, Krokan HE, Skorpen F, Elvestad MB, Hveem K, Vatten L, Linseisen J, Clavel-Chapelon F, Vineis P, Bueno-de-Mesquita HB, Lund E, Martinez C, Bingham S, Rasmuson T, Hainaut P, Riboli E, Ahrens W, Benhamou S, Lagiou P, Trichopoulos D, Holcátová I, Merletti F, Kjaerheim K, Agudo A, Macfarlane G, Talamini R, Simonato L, Lowry R, ConwayI DI, Znaor A, Healy C, Zelenika D, Boland A, Delepine M, Foglio M, Lechner D, Matsuda F, Blanche H, Gut I, Heath S, Lathrop M, Brennan P (2008) A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 452:633–637

    Google Scholar 

  • Huo S, Ma H, Huang K, Liu J, Wei T, Jin S, Zhang J, He S, Liang XJ (2013) Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors. Cancer Res 73:319–330

    Google Scholar 

  • Ito M, Ito G, Kondo M, Uchiyama M, Fukui T, Mori S, Yoshioka H, Ueda Y, Shimokata K, Sekido Y (2005) Frequent inactivation of RASSF1A, BLU, and SEMA3B on 3p21.3 by promoter hypermethylation and allele loss in non-small cell lung cancer. Cancer Lett 225:131–139

    Google Scholar 

  • Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593

    Google Scholar 

  • Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664

    Google Scholar 

  • Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Google Scholar 

  • Kadiyala NK, Mandal BK, Ranjan S, Dasgupta N (2018) Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Mater Sci Eng C Mater Biol Appl 93:191–205

    Google Scholar 

  • Kalinowska D, Grabowska-Jadach I, Liwinska M, Drozd M, Pietrzak M, Dybko A, Brzozka Z (2019) Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens Bioelectron 126:214–221

    Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153

    Google Scholar 

  • Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9:517–531

    Google Scholar 

  • Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B, Gerald WL, Powers S, Mu D (2007) Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA 104:16663–16668

    Google Scholar 

  • Kim W, Youn H, Kang C, Youn B (2015) Inflammation-induced radioresistance is mediated by ROS-dependent inactivation of protein phosphatase 1 in non-small cell lung cancer cells. Apoptosis 20:1242–1252

    Google Scholar 

  • Kim E, Kim W, Lee S, Chun J, Kang JH, Park G, Han IJ, Yang HJ, Youn HS, Youn BH (2017) TRAF4 promotes lung cancer aggressiveness by modulating tumor microenvironment in normal fibroblasts. Sci Rep 7:8923

    Google Scholar 

  • Korpanty G, Smyth E, Sullivan LA, Brekken RA, Carney DN (2010) Antiangiogenic therapy in lung cancer: focus on vascular endothelial growth factor pathway. Exp Biol Med 235:3–9

    Google Scholar 

  • Krystal G, Birrer M, Way J, Nau M, Sausville E, Thompson C, Minna J, Battey J (1988) Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer. Mol Cell Biol 8:3373–3381

    Google Scholar 

  • Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Williams NN, Kaiser LR, Croce CM (2003) Allelic loss on chromosome 3p21.3 and promoter hypermethylation of semaphoring 3B in non-small cell lung cancer. Cancer Res 63:3352–3355

    Google Scholar 

  • Larsen JE, Minna JD (2011) Molecular biology of lung cancer: clinical implications. Clin Chest Med 32:703–740

    Google Scholar 

  • Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, Olmedo I, Clos A, Sadagopa Ramanujam VM, Urayama A, Vergara L, Kogan MJ, Soto C (2010) Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 393:649–655

    Google Scholar 

  • Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak D, Ahn K, Lee JE, Yu IJ (2013) Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part Fibre Toxicol 10:36

    Google Scholar 

  • Liaskoni A, Angelopoulou A, Voulgari E, Popescu MT, Tsitsilianis C, Avgoustakis K (2018) Paclitaxel controlled delivery using a pH-responsive functional-AuNP/block-copolymer vesicular nanocarrier composite system. Eur J Pharm Sci 117:177–186

    Google Scholar 

  • Link S, El-Sayed MA (2010) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Google Scholar 

  • Liu R, Xiao W, Hu C, Xie R, Gao H (2018) Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J Control Release 278:127–139

    Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Google Scholar 

  • Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185

    Google Scholar 

  • Mahoney CL, Choudhury B, Davies H, Edkins S, Greenman C, van Haaften G, Mironenko T, Santarius T, Stevens C, Stratton MR, Futreal PA (2009) LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br J Cancer 100:370–375

    Google Scholar 

  • Malekmohammadi S, Hadadzadeh H, Farrokhpour H, Amirghofran Z (2018) Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter 14:2400. https://doi.org/10.1039/C7SM02248D

  • Malik P, Mukherjee TK (2018) Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 553:483–509

    Google Scholar 

  • Malik P, Shankar R, Malik V (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanoparticles 2014:14. Article ID 302429

    Google Scholar 

  • Massion PP, Kuo WL, Stokoe D, Olshen AB, Treseler PA, Chin K, Chen C, Polikoff D, Jain AN, Pinkel D, Albertson DG, Jablons DM, Gray JW (2002) Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res 62:3636–3640

    Google Scholar 

  • Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y, Suzuki K, Nakamoto M, Shimizu E, Minna JD, Yokota J (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26:5911–5918

    Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    Google Scholar 

  • Merlino GT, Xu YH, Ishii S, Clark AJ, Semba K, Toyoshima K, Yamamoto T, Pastan I (1984) Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma cells. Science 224:417–419

    Google Scholar 

  • Miller HA, Frieboes HB (2018) Evaluation of drug-loaded gold nanoparticle cytotoxicity as a function of tumor vasculature-induced tissue heterogeneity. Ann Biomed Eng 47:257. https://doi.org/10.1007/s10439-018-02146-4

  • Mori A, Klibanov AM, Huang TL (1991) Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 284:263–266

    Google Scholar 

  • Mukhopadhyay S, Malik P, Arora SK, Mukherjee TK (2013) Role of β1 integrins in the complication and drug resistance against lung cancer: targeting β1 integrins to eradicate lung cancer. In: Bonavida B (ed) Molecular mechanisms of tumor cell resistance to chemotherapy, resistance to targeted anti-Cancer therapeutics, Vol 1. https://doi.org/10.1007/978-1-4614-7070-0-5

  • Murakami Y, Tabata Y, Ikada Y (1997) Tumor accumulation of poly(ethylene glycol) with different molecular weights after intravenous injection. Drug Deliv 4:23–31

    Google Scholar 

  • Murphy CJ, Thompson LB, Alkilany AM, Sisco PN, Boulos SP, Sivapalan ST, Yang JA, Chernak DJ, Huang J (2010) The many faces of gold nanorods. J Phys Chem Lett 1:2867–2875

    Google Scholar 

  • Nakache E, Poulain N, Candau F, Orecchioni AM, Irache JM (1999) In: Nalwa HS (ed) Handbook of nanostructured materials and nanotechnology. Academic, New York

    Google Scholar 

  • Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368:753–756

    Google Scholar 

  • Normanno N, Bianco C, Strizzi L, Mancino M, Maiello MR, De Luca A, Caponigro F, Salomon DS (2005) The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets 6:243–257

    Google Scholar 

  • Ojea-Jiménez I, Romero FM, Bastius NG, Puntes V (2010) Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. J Phys Chem C 114:1800–1804

    Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Google Scholar 

  • Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci 101:13306–13311

    Google Scholar 

  • Pei L, Mori K, Adachi M (2004) Formation process of two-dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization. Langmuir 20:7837–7843

    Google Scholar 

  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    Google Scholar 

  • Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei TA, Yahyaei B (2017) Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol 29:86–93

    Google Scholar 

  • Prabhakar U, Blakey DC, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417

    Google Scholar 

  • Qiu Y, Liu Y, Wang LM, Xu LG, Bai R, Ji Y, Wu X, Zhao Y, Li Y, Chen C (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    Google Scholar 

  • Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202

    Google Scholar 

  • Richardson GE, Johnson BE (1993) The biology of lung cancer. Semin Oncol 20:105–127

    Google Scholar 

  • Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26:64–70

    Google Scholar 

  • Roh MS (2014) Molecular pathology of lung cancer: current status and future directions. Tuberc Respir Dis 77:49–54

    Google Scholar 

  • Roth J (1996) The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry. Histochem Cell Biol 106:1–8

    Google Scholar 

  • Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, MR MD (2010) Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA 107:12369–12374

    Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM, Westra WH, Herman JG, Sidransky D (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62:3659–3662

    Google Scholar 

  • Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed 9:467–483

    Google Scholar 

  • Sauter W, Rosenberger A, Beckmann L, Kropp S, Mittelstrass K, Timofeeva M, Wölke G, Steinwachs A, Scheiner D, Meese E, Sybrecht G, Kronenberg F, Dienemann H, LUCY- Consortium, Chang-Claude J, Illig T, Wichmann HE, Bickeböller H, Risch A (2008) Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer. Cancer Epidemiol Biomark Prev 17:1127–1135

    Google Scholar 

  • Schwerdtfeger P (1989) Relativistic effects in gold chemistry. 2. The stability of complex halides of gold (III). J Am Chem Soc 111:7261–7262

    Google Scholar 

  • Shahhoseini E, Ramachandran P, Patterson WR, Geso M (2018) Determination of dose enhancement caused by AuNPs with Xoft® Axxent® Electronic (eBx™) and conventional brachytherapy: in vitro study. Int J Nanomed 13:5733–5741

    Google Scholar 

  • Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, mKurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Google Scholar 

  • Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B (2013) A systematic analysis of peptide linker length and liposomal polyethylene glycol coating on cellular uptake of peptide-targeted liposomes. ACS Nano 7:2935–2947

    Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Google Scholar 

  • Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246:491–494

    Google Scholar 

  • Takiyama K (1958) Formation and aging of precipitates. viii. formation of monodisperse particles (1) gold sol particles by sodium citrate method. Bull Chem Soc Jpn 31:944–950

    Google Scholar 

  • Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP, Manolescu A, Thorleifsson G, Stefansson H, Ingason A, Stacey SN, Bergthorsson JT, Thorlacius S, Gudmundsson J, Jonsson T, Jakobsdottir M, Saemundsdottir J, Olafsdottir O, Gudmundsson LJ, Bjornsdottir G, Kristjansson K, Skuladottir H, Isaksson HJ, Gudbjartsson T, Jones GT, Mueller T, Gottsäter A, Flex A, Aben KKH, de Vegt F, Mulders PFA, Isla D, Vidal MJ, Asin L, Saez B, Murillo L, Blondal T, Kolbeinsson H, Stefansson JG, Hansdottir I, Runarsdottir V, Pola R, Lindblad B, van Rij AM, Dieplinger B, Haltmayer M, Mayordomo JI, Kiemeney LA, Matthiasson SE, Oskarsson H, Tyrfingsson T, Gudbjartsson DF, Gulcher JR, Jonsson S, Thorsteinsdottir U, Kong A, Stefansson K (2008) A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452:638–642

    Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  • United States Department of Agriculture (2002) Nanoscale science and engineering for agriculture and food systems; Report submitted to Cooperative State Research, Education and Extension Service. United States Department of Agriculture, National Planning Workshop, Washington, DC

    Google Scholar 

  • Vijayan R, Joseph S, Mathew B (2017) Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed Biotechnol 46:861–871

    Google Scholar 

  • Wakaskar RR (2017) Passive and active targeting in tumor microenvironment. Int J Drug Dev Res 9:37–41

    Google Scholar 

  • Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE (2000) Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12:1232–1235

    Google Scholar 

  • Wei L, Song XR, Sun JJ, Wang XW, Xie L, Lv LY (2012) Lysyl oxidase may play a critical role in hypoxia-induced NSCLC cells invasion and migration. Cancer Biother Radiopharm 27:672–677

    Google Scholar 

  • Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, Shah K, Sato M, Thomas RK, Barletta JA, Borecki IB, Broderick S, Chang AC, Chiang DY, Chirieac LR, Cho J, Fujii Y, Gazdar AF, Giordano T, Greulich H, Hanna M, Johnson BE, Kris MG, Lash A, Lin L, Lindeman N, Mardis ER, McPherson JD, Minna JD, Morgan MB, Nadel M, Orringer MB, Osborne JR, Ozenberger B, Ramos AH, Robinson J, Roth JA, Rusch V, Sasaki H, Shepherd F, Sougnez C, Spitz MR, Tsao MS, Twomey D, Verhaak RG, Weinstock GM, Wheeler DA, Winckler W, Yoshizawa A, Yu S, Zakowski MF, Zhang Q, Beer DG, Wistuba II, Watson MA, Garraway LA, Ladanyi M, Travis WD, Pao W, Rubin MA, Gabriel SB, Gibbs RA, Varmus HE, Wilson RK, Lander ES, Meyerson M (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Google Scholar 

  • West KA, Linnoila IR, Belinsky SA, Harris CC, Dennis PA (2004) Tobacco carcinogen-induced cellular transformation increases activation of the phosphatidylinositol 3'-kinase/Akt pathway in vitro and in vivo. Cancer Res 64:446–451

    Google Scholar 

  • Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev 1:1–12

    Google Scholar 

  • Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, Hubbard DD, DuPage MJ, Whittaker CA, Hoersch S, Yoon S, Crowley D, Bronson RT, Chiang DY, Meyerson M, Jacks T (2011) Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473:101–104

    Google Scholar 

  • Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popović Z, RK RKJ, Bawendi MG, Fukumura D (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci 108:2426–2431

    Google Scholar 

  • Wu Y, Xu J, Chen J, Zou M, Rusidanmu A, Yang R (2018) Blocking transferrin receptor inhibits the growth of lung adenocarcinoma cells in vitro. Thorac Cancer 9:253–261

    Google Scholar 

  • Xie H, Hu J, Pan H, Lou Y, Lv P, Chen Y (2014) Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells. BMB Rep 47:104–109

    Google Scholar 

  • Xie Y, Killinger B, Moszczynska A, Merkel OM (2016) Targeted delivery of sirna to transferrin receptor overexpressing tumor cells via peptide modified polyethylenimine. Molecules 21:E1334

    Google Scholar 

  • Yatsimirskii KB (1995) Relativistic effects in chemistry. Theor Exp Chem 31:153–168

    Google Scholar 

  • Yokota J, Mori N, Akiyama T, Shimosato Y, Sugimura T, Terada M (1989) Multiple genetic alterations in small-cell lung carcinoma. Princess Takamatsu Symp 20:43–48

    Google Scholar 

  • Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Exp Opin Drug Del 5:309–319

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Central University of Gujarat, Gandhinagar, for all the infrastructural and round the clock internet facility.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Malik, P., Ameta, R.K. (2019). Recent Advances in the au NP Treatment Strategies of Lung Cancers. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_29

Download citation

Publish with us

Policies and ethics